簡易檢索 / 詳目顯示

研究生: 陳志強
Chen, Chih-Chiang
論文名稱: 以非溶劑誘導相分離的改善製程製備高透明全疏滑溜表面
Fabrication of Highly Transparent Slippery Surfaces with Omniphobicity by an Improved Process Using Non-Solvent-Induced Phase Separation
指導教授: 楊毓民
Yang, Yu-Min
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 117
中文關鍵詞: 非溶劑誘導相分離疏水改質全疏滑溜高穿透度
外文關鍵詞: Non-solvent-induced phase separation, Hydrophobic modification, Omniphobicity, Slippery, High transmittance
相關次數: 點閱:101下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究致力於改善非溶劑誘導相分離(Non-Solvent-Induced Phase Separation, NIPS)的製程,創造出具有穩定全疏特性及高穿透度之表面。文中選用含氟的共聚高分子 (Poly(vinylidene fluoride-co-hexafluoropropylene), PVDF-HFP)做為成膜的主要材料,以鄰苯二甲酸二丁酯 (Dibutyl phthalate, DBP),來創造粗糙孔洞結構,並分別使用3-氨基丙基三乙氧基矽烷和全氟辛基三乙氧基矽烷來對PVDF-HFP進行兩步驟的疏水性改質。最後再以全氟潤滑液 (Fomblin® Y)引入粗糙孔洞結構中,藉此創造具備全疏及高穿透度性質的滑溜表面。
      研究結果顯示,藉由改變PVDF-HFP及DBP之比例可以調控其對水的靜態接觸角大小,也就是疏水的程度,在高DBP比例的情況下,表面呈現出越高的疏水性。在將Fomblin® Y引入表面之後所形成的滑溜表面對表面張力從72.8到17.2mN/m的八種測試液體皆具有極低的傾斜角 (Sliding angle < 10 o),且在特定比例 (PVDF-HFP:DBP=1:1)下的滑溜表面,其平均穿透度可達92.9%。由於滑溜薄膜的全疏及高穿透度之特性,將可應用於太陽能電池的表面作為自潔塗佈和避免液體於針頭爬升之現象。

    This work aims to improve non-solvent-induced phase separation process and fabricate slippery surfaces with omniphobicity. PVDF-HFP was used for the main material and DBP was used to create porous structure on PVDF-HFP surfaces. And 3-aminopropyltriethoxysilane reacted with PVDF-HFP as the first-step modification and fluorinated alkyl silane were used to react with the functional group provided by 3-aminopropyltriethoxysilane. The two step modification would enhance hydrophobicity of PVDF-HFP effectively. After infusing lubricating liquid, Fomblin® Y, into porous structure, Fomblin® Y would form a liquid film on PVDF-HFP surfaces, and the omniphobic slippery surfaces could be fabricated.
    The omniphobic slippery surfaces could repel eight test liquids surface tension ranging from 72.8 to 17.2 mN/m (SA˂10ᵒ). Tuning the ratio of DBP could create different porous structure on PVDF-HFP surfaces, and the amount of porous structure would optical property. The optimized slippery surface exhibited highly transparency (average transmittance = 92.9%). Because the process of non-solvent-induced phase separation was facile, slippery surfaces could be applied to arbitrary substrates, the slippery surfaces could exist without substrate. Because of above characteristics of slippery surface, it can be applied to provide a anti-foul coating to a solar cell. A solar cell coated with slippery surface can avoid accumulation of dust on surface for fear of efficiency reduction.

    Extended Abstract II 致謝 XIV 目錄 XV 圖目錄 XIX 表目錄 XXVI 第一章 緒論 1 1.1前言 1 1.2 研究動機與研究目的 2 第二章 文獻回顧 3 2.1 蓮花效應 (Lotus effect) 3 2.2 超疏水理論 6 2.2.1 楊氏 (Young)方程式 8 2.2.2 溫佐(Wenzel)方程式 9 2.2.3 卡西-巴斯特(Cassie and Baxter)方程式 10 2.2.4 介於溫佐和卡西-巴斯特兩狀態之間的過渡狀態 11 2.3液固黏著性質 13 2.3.1 表面化學特性對液固黏著力之影響 14 2.3.2 表面物理結構對黏著力之影響 17 2.4 滑溜表面 21 2.4.1 液體注入多孔結構 22 2.4.2 注入液體之液膜與固體表面之疏水性的關係 23 2.5 滑溜表面製備方法 24 2.5.1 以有機材料製備滑溜表面 25 2.5.2 以無機材料製備滑溜表面 29 2.5.3以複合材料製備滑溜表面 33 2.6 疏水改質 35 第三章 實驗 41 3.1 實驗藥品 41 3.2儀器設備及裝置 44 3.2.1 Milli-Q超純水系統 44 3.2.2 表面輪廓儀 (Alpha step) 45 3.2.3 加熱攪拌器 (Hot plate stirrer) 45 3.2.4紫外光-可見光光譜儀 (UV/Vis spectrophotometer) 46 3.2.5掃描式電子顯微鏡 (Scanning electron microscope) 47 3.2.6紅外光譜儀 (Infrared Spectroscopy) 49 3.2.7 接觸角分析儀 (Contact angle measure analyzer) 51 3.2.8 旋轉塗佈機 (Laurell, Model WS-400-6NPP) 52 3.2.9 太陽光模擬器 (Solar Simulator) 53 3.3 實驗方法 57 3.3.1 玻璃基板的前置清洗流程 57 3.3.2 PVDF-HFP/DBP溶液的配製 57 3.3.3 以氨基矽烷進行的第一步驟改質 58 3.3.4 以全氟矽烷進行的第二步驟改質 58 3.3.5 利用刮刀塗佈法製備薄膜 59 3.3.6 利用浸鍍塗佈法製備薄膜 61 3.3.7 以全氟潤滑油注入疏水薄膜製備全疏滑溜薄膜 61 3.3.8 染料敏化太陽電池(dye-sensitized solar cell)的製備61 62 第四章 結果與討論 63 4.1 PVDF-HFP表面 64 4.1.1 改質後的PVDF-HFP表面形態 64 4.1.2 改質後的PVDF-HFP之表面粗糙度 67 4.1.3 改質後的PVDF-HFP之光學性質 69 4.2 全疏滑溜表面 74 4.2.1 潤滑液體之選擇 75 4.2.2 滑溜表面之疏液性質 76 4.2.3 PVDF-HFP改質前後對全疏滑溜性質的影響 81 4.2.4 不同比例下的滑溜表面對時間的穩定性 83 4.2.5 不同比例下的滑溜表面之光學性質 87 4.2.6 將滑溜表面塗佈於不同基板/形狀之表面 91 4.2.7 利用高透明滑溜表面模擬太陽能電池之抗污塗層 93 4.2.8 利用滑溜表面解決液體在針頭前端的爬升情形 95 4.3 改質機制之探討 98 4.3.1 可能的反應機制 99 4.3.2 FTIR分析 100 4.3.3 反應的理論基礎親核取代反應63 103 4.3.4 疏水性改質反應機制 104 4.3.5 各階段PVDF-HFP疏水性質比較 105 第五章 結論與建議 107 5.1 結論 107 5.2 建議 109 第六章 參考文獻 110

    1. Barthlott, W.; Neinhuis, C., Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta, 202, 1-8, 1997.
    2. Neinhuis, C.; Barthlott, W., Characterization and distribution of water-repellent, self-cleaning plant surfaces. Annals of Botany, 79, 667-677, 1997.
    3. Wenzel, R. N., Resistance of solid surfaces to wetting by water. Industrial and Engineering Chemistry, 28, 988-994, 1936.
    4. Cassie, A. B. D.; Baxte, S., Wettability of porous surfaces. Transactions of the Faraday Society , 40, 546-551, 1944.
    5. Liu, X.; Liang, Y.; Zhou, F.; Liu, W., Extreme wettability and tunable adhesion: biomimicking beyond nature? Soft Matter, 8, 2070-2086, 2012.
    6. Bormashenko, E.; Grynyov, R.; Chaniel, G.; Taitelbaum, H.; Bormashenko, Y., Robust technique allowing manufacturing superoleophobic surfaces. Applied Surface Science, 270, 98-13, 2013.
    7. Feng, X. J.; Jiang, L., Design and creation of superwetting/antiwetting surfaces. Advanced Materials, 18, 3063-3078, 2006.
    8. Bico, J.; Thiele, U.; Quéré, D., Wetting of textured surfaces. Colloids and Surfaces. A: Physicochemical and Engineering Aspects, 206, 41-46, 2002.
    9. Tuteja, A.; Choi, W.; Ma M.; Mabry, J. M.; Mazzella, S. A.; Rutledge G. C.; McKinley, G. H.;Cohen R. E., Designing Superoleophobic Surfaces. Science, 318, 1618-1622, 2007.
    10. Feng, L.; Zhang, Y.; Xi, J.; Zhu, Y.; Wang, N.; Xia, F.; Jiang, L., Petal effect: a superhydrophobic state with high adhesive force. Langmuir : the ACS journal of surfaces and colloids, 24, 4114-4119, 2008.
    11. Zhao, W.; Wang, L.; Xue, Q., Fabrication of low and high adhesion hydrophobic Au surfaces with micro/nano-biomimetic structures. The Journal of Physical Chemistry C, 114, 11509-11514, 2010.
    12. Xi, J.; Jiang, L., Biomimic superhydrophobic surface with high adhesive forces. Industrial & Engineering Chemistry Research, 47, 6354-6357, 2008.
    13. Jin, M.; Feng, X.; Feng, L.; Sun, T.; Zhai, J.; Li, T.; Jiang, L., Superhydrophobic aligned polystyrene nanotube films with high adhesive force. Advanced Materials, 17, 1977-1981, 2005.
    14. Liu, M.; Zheng, Y.; Zhai, J.; Jiang, L., Bioinspired super-antiwetting interfaces with special liquid-solid adhesion. Accounts of chemical research, 43, 368-377, 2010.
    15. Khoo, H. S.; Tseng, F. G., Engineering the 3D architecture and hydrophobicity of methyltrichlorosilane nanostructures. Nanotechnology, 19, 345603-345611, 2008.
    16. Lai, Y.; Lin, C.; Huang, J.; Zhuang, H.; Sun, L.; Nguyen, T., Markedly controllable adhesion of superhydrophobic spongelike nanostructure TiO2 films. Langmuir: the ACS journal of surfaces and colloids, 24, 3867-3873, 2008.
    17. Liu, X.; Ye, Q.; Yu, B.; Liang, Y.; Liu, W.; Zhou, F., Switching water droplet adhesion using responsive polymer brushes. Langmuir: the ACS journal of surfaces and colloids, 26, 12377-12382, 2010.
    18. Das, A.; Schutzius, T. M.; Bayer, I. S.; Megaridis C. M., Superoleophobic and conductive carbon nanofiber/fluoropolymer composite films. Carbon, 50, 1346-1354, 2012.
    19. Park, B. G.; Lee, W.; Kim, J. S.; Lee, K. B., Superhydrophobic fabrication of anodic aluminum oxide with durable and pitch-controlled nanostructure. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 370, 15-19, 2010.
    20. Cao, L.; Gao, D., Transparent superhydrophobic and highly oleophobic coatings. Faraday Discuss, 146, 57-65, 2010.
    21. Lai, Y.; Gao, X.; Zhuang, H.; Huang, J.; Lin, C.; Jiang, L., Designing superhydrophobic porous nanostructures with tunable water adhesion. Advanced Materials, 21, 3799-3803, 2009.
    22. Huang, X. J.; Kim, D. H.; Im, M.; Lee, J. H.; Yoon, J. B.; Choi, Y. K., "Lock-and-key" geometry effect of patterned surfaces: wettability and switching of adhesive force. Small, 5, 90-94, 2009.
    23. Zhao, X. D.; Fan, H. M.; Liu, X. Y.; Pan, H.; Xu, H. Y., Pattern-dependent tunable adhesion of superhydrophobic MnO2 nanostructured film. Langmuir: the ACS journal of surfaces and colloids, 27, 3224-8, 2011.
    24. Bohn, H.-F.; Federle, W. Insect aquaplaning: Nepenthes pitcher plants capture prey with the peristome, a fully wettable water-lubricated anisotropic surface. PNAS, 101, 14138-14143, 2004.
    25. Wong, T. S.; Kang, S. H.; Tang, S. K.; Smythe, E. J.; Hatton, B. D.; Grinthal, A.; Aizenberg, J., Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature, 477, 443-447, 2011.
    26. Lafuma, A.; Quéré, D., Slippery pre-suffused surfaces. Europhys. Lett., 96, 56001 (4 pages), 2011.
    27. Epstein, A. K.; Wong, T. S.; Belisle, R. A.; Boggs, E. M.; Aizenberg, J. Liquid-infused structured surfaces with exceptional anti-biofouling performance. Proc. Natl. Acad. Sci. U.S.A., 109, 13182−13187, 2012.
    28. Kim, P.; Wong, T. S.; Alvarenga, J.; Kreder, M. J.; Adorno-Martinez, W. E.; Aizenberg, J. Liquid-infused nanostructured surfaces with extreme anti-ice and anti-frost performance. ACS Nano, 6, 6569−6577, 2012.
    29. Yao, X.; Hu, Y.; Grinthal, A.; Wong, T. S.; Mahadevan L.; Aizenberg, J., Adaptive fluid-infused porous films with tunable transparency and wettability, Nature Mater., 12, 529-534, 2013.
    30. Daniel, D.; Mankin, M. N.; Belisle, R. A.; Wong, T. S.; Aizenberg, J. Lubricant-infused micro/nano-structured surfaces with tunable dynamic omniphobicity at high temperatures. Appl. Phys. Lett., 102, 231603 (4 pages), 2013.
    31. Lalia, B. S.; Anand, S.; Varanasi, K. K.; Hashaikeh, R., Fog-harvesting potential of lubricant-impregnated electrospun nanomats. Langmuir , 29, 13081-13088, 2013.
    32. Okada, I.; Shiratori, S., High-transparency, self-standable gel-SLIPS fabricated by a facile nanoscale phase separation. ACS Appl. Mater. Interfaces, 6, 1502-1508, 2014.
    33. Chen, L.; Geissler, A.; Bonaccurso, E.; Zhang, K., Transparent slippery surfaces made with sustainable porous cellulose lauroyl ester films. ACS Appl. Mater. Interfaces, 6, 6969-6976, 2014.
    34. Charpentier, T. V.J.; Neville, A.; Baudin, S.; Smith, M. J.; Euvrard, M.; Bell, A.; Wang, C.; Barker, R., Liquid infused porous surfaces for mineral fouling mitigation. Journal of Colloid and Interface Science, 444, 81–86, 2015.
    35. Manna, U.; Lynn, D. M., Fabrication of liquid-infused surfaces using reactive polymer multilayers: principles for manipulating the behaviors and mobilities of aqueous fluids on slippery liquid interfaces. Adv. Mater., 27, 3007–3012, 2015.
    36. Yuan, S.; Luan, S.; Yan, S.; Shi, H.; Yin, J., Facile fabrication of lubricant-infused wrinkling surface for preventing thrombus formation and infection. ACS Appl. Mater. Interfaces, 7, 19466−19473, 2015.
    37. Anand, S.; Paxson, A. T.; Dhiman, R.; Smith, J. D.; Varanasi, K.K. Enhanced condensation on lubricant-impregnated nanotextured surfaces. ACS Nano, 6, 10122−10129, 2012.
    38. Subramanyam, S. B.; Rykaczewski, K.; Varanasi, K. K. Ice adhesion on lubricant-impregnated textured surfaces. Langmuir, 29, 13414−13418, 2013.
    39. Chen, J.; Dou, R.; Cui, D.; Zhang, Q.; Zhang, Y.; Xu, F.; Zhou, X.; Wang, J.; Song, Y.; Jiang, L., Robust prototypical anti-icing coatings with a self-lubricating liquid water layer between ice and substrate. ACS Appl. Mater. Interfaces, 5, 4026-4030, 2013.
    40. Vogel, N.; Belisle, R. A.; Hatton, B.; Wong, T. S.; Aizenberg, J. Transparency and damage tolerance of patternable omniphobic lubricated surfaces based on inverse colloidal monolayers. Nat. Commun., 4, 1-10, 2013.
    41. Kim, P.; Kreder, M. J.; Alvarenga, J.; Aizenberg, J., Hierarchical or not? Effect of the length scale and hierarchy of the surface roughness on omniphobicity of lubricant-infused substrates. Nano Lett., 13, 1793-1799, 2013.
    42. Jenner, E.; D'Urso, B., Wetting states on structured immiscible liquid coated surfaces. Appl. Phys. Lett., 103 , 251606 (4 pages), 2013.
    43. Wang, P.; Lu, Z.; Zhang, D., Slippery liquid-infused porous surfaces fabricated on aluminum as a barrier to corrosion induced by sulfate reducing bacteria. Corrosion Science, 93, 159–166, 2015.
    44. Yang, S.; Qiu, R.; Song, H.; Wang, P.; Shi, Z.; Wang, Y., Slippery liquid-infused porous surface based on perfluorinated lubricant/iron tetradecanoate: Preparation and corrosion protection application. Applied Surface Science, 328, 491–500, 2015.
    45. Liu, Q.; Yang, Y.; Huang, M.; Zhou, Y.; Liu, Y.; Liang, X., Durability of a lubricant-infused electrospray silicon rubber surface as an anti-icing coating. Applied Surface Science, 346, 68–76, 2015.
    46. Wang, X.-W.; Zhang, S.-A.; Guo, C.; Yuan, Z.-H., Rapid movement of water droplets on the hydrophobic surface of ZnO nanorod array impregnated by lubricant. NANO: Brief Reports and Reviews,Vol. 10, No. 4, 1550051 (6 pages), 2015.
    47. Manabe, K.; Kyung, K.-H.; Shiratori, S., Biocompatible slippery Fluid-infused films composed of chitosan and alginate via layer-by-layer self-assembly and their antithrombogenicity. ACS Appl. Mater. Interfaces, 7, 4763−4771, 2015.
    48. 曾冠凱. 奈米粒子薄膜疏液表面的製備與應用. 國立成功大學, 台灣, 台南, 2015.
    49. Zhu, L.; Xue, J.; Wang, Y.; Chen, Q.; Ding, J.; Wang, Q., Ice-phobic coatings based on silicon-oil-infused polydimethylsiloxane. ACS Appl. Mater. Interfaces, 5, 4053−4062, 2013.
    50. Huang, X.; Chrisman, J. D.; Zacharia, N. S., Omniphobic slippery coatings based on lubricant-infused porous polyelectrolyte multilayers. ACS Macro Lett., 2, 826−829, 2013.
    51. Manabe, K.; Nishizawa, S.; Kyung, K.-H.; Shiratori, S., Optical phenomena and antifrosting property on biomimetics slippery fluid-infused antireflective films via layer-by-layer comparison with superhydrophobic and antireflective films. ACS Appl. Mater. Interfaces, 6, 13985−13993, 2014.
    52. Sunny, S.; Vogel, N.; Howell, C.; Vu, T. L.; Aizenberg, J., Lubricant-infused nanoparticulate coatings assembled by layer-by-layer deposition. Adv. Funct. Mater., 24, 6658–6667, 2104.
    53. Zhang, P.; Chen, H.; Zhang, L.; Ran, T.; Zhang, D., Transparent self-cleaning lubricant-infused surfaces made with large-area breath figure patterns. Applied Surface Science, 355, 1083–1090, 2015.
    54. Brown, P. S.; Bhushan, B., Mechanically durable, superoleophobic coatings prepared by layer-by-layer technique for anti-smudge and oil-water separation. SCIENTIFIC REPORTS, | 5 : 8701 | DOI: 10.1038/srep08701, 2015.
    55. Cao, M.; Guo, D.; Yu, C.; Li, K.; Liu, M.; Jiang, L., Water-repellent Properties of Superhydrophobic and lubricant infused Slippery”Surfaces: A Brief Study on the Functions and Applications. ACS Appl. Mater. Interfaces, 8, 3615−3623, 2016.
    56. Wang, Y.; Zhang, H.; Liu, X.; Zhou, Z., Slippery liquid-infused substrates: a versatile preparation, unique anti-wetting and drag reduction effect on water. J. Mater. Chem. A, 4, 2524–2529, 2016.
    57. 張鑑祥; 楊毓民, 分子層級的薄膜表面型態控制 - 逐層組裝技術. 化工技術 , 12, 135-144, 2004.
    58. Zhou, H.; Wang, H.; Niu, H.; Gestos, A.; Lin, T., Robust, self-healing superamphiphobic fabrics prepared by two-step coating of fluoro-containing polymer, fluoroalkyl silane, and modified silica nanoparticles. Adv. Funct. Mater. 23, 1664–1670, 2013.
    59. Wang, H.; Zhou, H.; Niu, H.;Zhang, J.; Du, Y.; Lin, T., Dual-layer superamphiphobic/superhydrophobic-oleophilic nanofibrous membranes with unidirectional oil-transport ability and strengthened oil–water separation performance. Adv. Mater. Interfaces, 2, 1400506, 2015.
    60. Mizuno, K., Low refractive index coating composition for use in antireflection polymer film coatings and manufacturing method. U.S. Patent, US 7374812, 2008 .
    61. 陳立東. 鈷系統膠態電解質的製備及其在染料敏化太陽能電池上之應用. 國立成功大學, 台灣, 台南, 2015.
    62. St. Thomas, Spectroscopic Tools. URL: http://www.science-and-fun.de/tools/
    63. McMurry, J. E., Organic Chemistry: Chapter 11 Reactions of alkyl halides: nucleophilic substitutions and eliminations. 7 ed., Cengage Learning, Boston, 2008.

    下載圖示 校內:2019-12-31公開
    校外:2019-12-31公開
    QR CODE