| 研究生: |
林瑞展 Lin, Rui-Chan |
|---|---|
| 論文名稱: |
SU(3,q^2)的parabolic子群的特徵表應用 An application of character tables of parabolic subgroups of SU(3,q^2) |
| 指導教授: |
黃世昌
Huang, Shih-Chang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 數學系應用數學碩博士班 Department of Mathematics |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 英文 |
| 論文頁數: | 96 |
| 中文關鍵詞: | 特殊酉群 、有限群的特徵函數 、Dade猜想 |
| 外文關鍵詞: | special unitary group, character of finite groups |
| 相關次數: | 點閱:213 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
特徵函數是由Frobenius在1896年提出的,這給了我們一個新的觀點去研究有限群。特徵函數表在群論中有很多應用。在這篇論文裡,我們先構造SU(3,q^2)的所有parabolic子群的特徵函數表,其中q是一個質數的任意次方。接著,我們運用這些結果來驗證表現理論上的一個有名猜想:Dade猜想。
Character theory were defined by Frobenius in 1896. It give us a new viewpoint for finite group. There are many applications about character table in group theory. In this thesis, we construct the character tables of the parabolic subgroups of the special unitary group SU(3,q^2), q is a power of a prime p. Furthermore, we use these character tables to verify a famous conjecture formulated by Dade.
[1] Results on Dade's conjecture, 2010, http://www.math.ncku.edu.tw/˜shuang/Dade_uptodate.pdf.
[2] J. L. Alperin, Weight for finite groups, in: The Arcata Conference on Respresentations of Finite Groups (1987), 369-379.
[3] J. An and S. C. Huang, Dade's invariant conjecture for the general unitary group in defining characteristic, Internat. J. Algebra Comput 20 (2010), 357-380.
[4] Borel, Seminar in algebraic groups and related finite group, Lecture Notes in Math 131 (1970).
[5] R. Brauer, Representations of finite groups, Lectures on Modern Mathematics 1(1963), 133-175.
[6] N. Burgoyne and C. Willianmson, On a theorem of Borel and Tits for finite chevalley groups, Arch. Math (Basel) 27 (1976), 489-491.
[7] E. C. Dade, Counting characters in blocks I, Invent. Math 109 (1992), 187-210.
[8] E. C. Dade, Counting characters in blocks II, J. Reine Angew. Math. 448 (1994), 97-190.
[9] E. C. Dade, Counting characters in blocks II.9, Representation Theory of Finite Groups by Solomon, R (1997), 45-59.
[10] V. Ennola, On the characters of the finite unitary groups, Ann. Acad. Sci. Fenn. Ser. A I (1963), 120-155.
[11] M. Geck, Irreducible brauer characters of the 3-dimensional special unitary groups in non-defining characteristic, Comm. in Alg 18 (1990), 563-584.
[12] J. A. Green, The character of the finite general linear groups, Trans. Amer. Math. Soc. 80 (1955), 402-447.
[13] J. A. Green, Discrete series characters for GL(n,q), Algebras and Representation Theory 2 (1999), 61-82.
[14] G. O. Michler ;H. I. Blau, Modular representation theory of finite groups with T.I. Sylow p-subgroups, Trans. Amer. Math. Soc 319 (1990), 417-468.
[15] Y. Tsushima H. Nagao, Representations of finite groups, 1 ed., Cambridge University Press, 1989.
[16] K. M. Hoffman and R. Kunze, Linear algebra, 2 ed. 1971.
[17] B. Huppert, Endliche gruppen i, Berlin ; Heidelberg ; New York : Springer, 1967.
[18] I. M. Isaacs, Characters of solvable and symplectic groups, Amer. J. of Math 95(1973), 594-635.
[19] I. M. Isaacs, G. Mall, and G. Navarro, A reduction theorem for the McKay conjecture, Invent. Math 170 (2007), 33-101.
[20] G. James and M. Liebeck, Representations and characters of groups, 2 ed., Cambridge University Press, 2001.
[21] R. Knorr and G. R. Robinson, Some remark on a conjecture of Alperin, J. London Math. Soc. (2) 39 (1989), 48-60.
[22] J. McKay, Irreducible representations of odd degree, J. Algebra 20 (1972), 416-418.
[23] G. Robinson R. Knorr, Some remark on a conjecture of Alperin, J. London Math Soc.(2) 39 (1989), 48-60.
[24] W. A. Simpson and J. S. Frame, The character tables for SL(3, q); SU(3,q^2),PSL(3, q), PSU(3,q^2), Can. J. Math 25 (1973), 486-494.
[25] H. Yamada and H. Enomoto, The characters of G2(2^n), Japan. J. Math 12 (1986),325-377