簡易檢索 / 詳目顯示

研究生: 蔡蕙如
Tsai, Hui-ju
論文名稱: 探討異檸檬酸脫氫酶在腫瘤細胞所扮演的角色
Study of the role of isocitrate dehydrogenase in cancer cells
指導教授: 張文粲
Chang, Wen-Tsan
學位類別: 碩士
Master
系所名稱: 醫學院 - 生物化學暨分子生物學研究所
Department of Biochemistry and Molecular Biology
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 92
中文關鍵詞: 異檸檬酸脫氫酶瓦式效應
外文關鍵詞: warburg effect, isocitrate dehydrogenase
相關次數: 點閱:110下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 1924年,德國科學家Otto Warburg提出即使在有氧的環境底下,癌細胞仍然偏好糖解作用作為能量來源,這個現象被稱為“瓦式效應”。科學家目前提出:粒線體缺陷、缺氧的環境、致癌基因的表現以及代謝酵素的改變,為造成瓦式效應的可能原因。目前,雖然可以施打子宮頸疫苗降低人類乳突病毒(HPV)的感染,但是其價格昂貴且不適合對於疫苗會過敏者,以及已經受到人類乳突病毒的感染者,因此研究治療子宮頸癌的方法仍然是必要的。另外之前的研究提出,HeLa細胞株偏好有氧呼吸作用作為能量來源,因此本實驗想要了解,檸檬酸循環中第三個酵素異檸檬酸脫氫酶(Isocitrate dehydrogenase)表現量的高低,是否會改變細胞獲取能量來源的方式,以及增加對抗癌藥物的敏感性。異檸檬酸脫氫酶分為NADP+依賴型(IDH1和IDH2)和NAD+依賴型(IDH3),IDH3為主要執行檸檬酸循環的酵素,是一個四聚體,由兩個α次單元、一個β次單元和一個γ次單元所組成。實驗首先建立持續性沉默IDH3A表現的HeLa細胞株,其細胞型態與爬行能力和野生型HeLa細胞株並無明顯差異,對於能量的需求也沒有因此而偏向糖解作用,可能原因為p53的表現上升,導致SCO2表現量也上升,進而促進氧化磷酸化反應。於是接下來在p53缺失的H1299細胞株,也建立持續性沉默IDH3A表現的H1299細胞株,實驗結果顯示粒線體膜電位依然比野生型H1299細胞株高,因此排除p53造成促進氧化磷酸化反應的可能性。另外,持續性沉默IDH3A表現的HeLa細胞株之所以依然進行氧化磷酸化反應,是因為細胞中存在補償路徑,經由L-glutamine實驗證實此假設。實驗結果顯示持續性沉默IDH3A表現,會使得HeLa細胞株對於抗癌藥物2-DG更加敏感,並且降低其固著依賴型的生長能力。

    In 1924, Otto Warburg proposed a phenomenon that cancer cells prefer using glycolysis for energy source called “Warburg effect”. Scientists present: mitochondrial defects, hypoxic environment, oncogenic signals and metabolic enzyme changes caused by“Warburg effect”for the possible mechanisms. At present, although the cervical vaccine can reduce the human papillomavirus (HPV) infection, but its price is expensive, not suitable for allergy vaccines will, and have been infected with human papillomavirus, and therefore the research of cervical cancer treatment is necessary. In addition, HeLa cell line as a preferred source of energy for aerobic respiration, so we want to understand the third of citric acid cycle enzyme isocitrate dehydrogenase the performance of high and low expression, will changes in access to energy sources of cells, as well as to increase the sensitivity of anti-cancer drugs. In mammalian tissues two additional IDH isoenzymes are present, the cytosolic NADP(+)-specific IDH1 and the mitochondrial NADP(+)-specific IDH2. The
    mitochondrial NAD(+)-specific IDH3 is a heterotetramer composed of two α-subunits and single β- and γ-subunits. Then, I established IDH3A stable knockdown cell lines in HeLa cell to analyze the differences between wide type cells and stable knockdown cell lines. I found the morphology and migration ability there was no significant difference. In the demand for energy is also not biased towards the role of sugar solution, the possible reasons for the increase in p53 expression, SCO2 also lead to increased performance, and to promote the reaction of oxidative phosphorylation. So the next I established IDH3A stable knockdown cell lines in H1299 cell (p53-null), experimental results showed that mitochondrial membrane potential is still more than the height of wild-type H1299 cells, p53 is therefore excluded from the promotion of oxidative phosphorylation. Because cells exist in the compensation pathway, so the IDH3A stable knockdown cell lines still perform oxidative phosphorylation, through the L-glutamine experiments confirm this assumption. Experimental results show that the down regulation of IDH3A expression will make HeLa cell line more sensitive to
    2-DG, and reduce the capacity of anchorage-dependent growth.

    第一章 序論 1-1 腫瘤細胞裡的”瓦式效應”(Warburg effect).1 1-2 代謝酵素的多功能性.2 1-3 代謝酵素作為腫瘤細胞治療的標的.2 1-4 子宮頸癌.3 1-5 異檸檬酸脫氫酶 (Isocitrate dehydrogenase,IDH).3 1-6 研究動機.4 第二章 實驗材料與方法 2-1. 實驗材料 2-1-1. 勝任細胞 (competent cell)菌株.5 2-1-2. 限制酶.5 2-1-3. 細胞株.5 2-1-4. 化學藥品.5 2-1-5. 試劑.8 2-1-6. 抗體.9 2-1-7. 培養液.10 2-1-8. 細菌用的培養基-LBA plate.11 2-1-9. 緩衝液.11 2-1-10. 各種試劑配製.16 2-1-11. 勝任細胞 (competent cell)之製備.18 2-1-12. 儀器設備.18 2-2. 實驗方法 2-2-1. 基本分子生物學技術.19 (1)質體的製備.19 (2)構築質體的方法.21 2-2-2. 細胞培養程序.24 (1)細胞株與細胞的培養.24 (2)細胞數目的計數.25 (3)細胞的冷凍儲存.26 (4)解凍細胞.26 2-2-3. 細胞相關實驗.26 (1)短暫性轉染 (transient transfection).26 (2)雙重冷光基因活性的測定 (Dual-Luciferase assay).27 (3)蛋白質定量 (Micro BCATM Protein Assay Reagent Kit).27 (4)西方墨點法 (Western blotting).28 (5)觀察細胞綠螢光表現量.29 (6)免疫螢光染色分析.29 (7)建立持續表現Hyg基因及shIDH3A的穩定細胞株 (stable cell lines).30 (8)細胞生長實驗.30 (9)細胞增殖分析 (MTT assay).31 (10)溴脫氧尿核苷混合實驗 (BrdU incorporation assay).31 (11)乳酸脫氫酶活性測定 (LDH activity assay).32 (12)傷口癒合細胞爬行能力分析實驗 (Wound healing migration assay).32 (13)細胞爬行能力分析實驗 (Boyden chamber assay).32 (14)細胞集落形成法 (Colony formation assay).33 (15)軟洋菜膠細胞集落形成法 (Soft agar colony formation assay).33 (16)粒線體膜電位測定 (Mitochondria membrane potential).34 (17)細胞內ROS測定.34 (18)細胞內H2O2測定.35 (19)細胞週期測定 (Cell cycle).35 (20)Propidium Iodide (PI)-Annexin V雙染實驗.36 (21)Phalloidin staining.37 2-2-4. 實驗質體的構築方法.37 第三章 實驗結果 3-1 分析內生性Isocitrate dehydrogenase α subunit(IDH3A)的表現量.39 3-2 利用siRNA評估系統篩選出有效的Isocitrate dehydrogenase α subunit (IDH3A) siRNA進而合成shRNA.39 3-3 分析短暫性轉染Isocitrate dehydrogenase α subunit (IDH3A) shRNA是否能有效地抑制內生性IDH3A的表現並觀察對HeLa細胞生長的影響.39 3-4 建立持續性沉默IDH3A表現的HeLa細胞株.40 3-5 分析持續性沉默IDH3A表現對細胞能量代謝的影響.40 3-6 分析持續性沉默IDH3A表現對細胞自由基產生的影響.41 3-7 分析持續性沉默IDH3A表現對細胞型態與F-actin形成的影響.42 3-8 分析持續性沉默IDH3A表現的穩定株其生長速率及細胞爬行能力與野生型HeLa細胞株的差異.42 3-9 分析持續性沉默IDH3A表現對細胞形成群落能力的影響.43 3-10 分析野生型HeLa細胞株與持續性沉默IDH3A表現的穩定細胞株培養於不含L-glutamine的培養液其生長速率的差異.43 3-11 分析野生型HeLa細胞株與持續性沉默IDH3A表現的穩定細胞株對糖解作用抑制劑2-dexoyglucose(2-DG)的敏感性.44 3-12 分析野生型HeLa細胞株與持續性沉默IDH3A表現的穩定細胞株對電子傳遞鏈抑制劑Rotenone、TTFA和sodium azide的敏感性.44 3-13 建立持續性沉默IDH3A表現的H1299細胞株.45 3-14 分析持續性沉默IDH3A表現對細胞粒線體膜電位的影響.46 3-15 分析持續性沉默IDH3A表現對細胞自由基產生的影響.46 3-16 分析持續性沉默IDH3A表現對細胞型態與F-actin形成的影響.46 3-17 分析持續性沉默IDH3A表現的穩定株其生長速率及細胞爬行能力與野生型H1299細胞株的差異.47 3-18 分析野生型HeLa細胞株與持續性沉默IDH3A表現的穩定株其生長速率的差異.47 第四章 討論.49 第五章 參考文獻.53 第六章 實驗結果圖表.59 第七章 附錄.89 作者簡歷.92

    Aggarwal, B.B. (2004). Nuclear factor-kappaB: the enemy within. Cancer Cell 6, 203-208.

    Arora, K.K., and Pedersen, P.L. (1988). Functional significance of mitochondrialbound hexokinase in tumor cell metabolism. Evidence for preferential phosphorylation of glucose by intramitochondrially generated ATP. J Biol Chem 263, 17422-17428.

    Balss, J., Meyer, J., Mueller, W., Korshunov, A., Hartmann, C., and von Deimling,A. (2008). Analysis of the IDH1 codon 132 mutation in brain tumors. Acta Neuropathol 116, 597-602.

    Bensaad, K., and Vousden, K.H. (2007). p53: new roles in metabolism. Trends Cell Biol 17, 286-291.

    Brownlee, M. (2001). Biochemistry and molecular cell biology of diabetic complications. Nature 414, 813-820.

    Byun, H.O., Kim, H.Y., Lim, J.J., Seo, Y.H., and Yoon, G. (2008). Mitochondrial dysfunction by complex II inhibition delays overall cell cycle progression via reactive oxygen species production. J Cell Biochem 104, 1747-1759.

    Christofk, H.R., Vander Heiden, M.G., Harris, M.H., Ramanathan, A., Gerszten, R.E., Wei, R., Fleming, M.D., Schreiber, S.L., and Cantley, L.C. (2008a). The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 452, 230-233.

    Christofk, H.R., Vander Heiden, M.G., Wu, N., Asara, J.M., and Cantley, L.C. (2008b). Pyruvate kinase M2 is a phosphotyrosine-binding protein. Nature 452, 181-186.

    De Jong, L., Elzinga, S.D., McCammon, M.T., Grivell, L.A., and van der Spek, H. (2000). Increased synthesis and decreased stability of mitochondrial translation products in yeast as a result of loss of mitochondrial (NAD(+))-dependent isocitrate dehydrogenase. FEBS Lett 483, 62-66.

    Ferguson, E.C., and Rathmell, J.C. (2008). New roles for pyruvate kinase M2: working out the Warburg effect. Trends Biochem Sci 33, 359-362.

    Fonnet E. Bleeker et al, (2009) IDH1 Mutations at Residue p.R132 (IDH1R132) Occur Frequently in High-Grade Gliomas But Not in Other Solid Tumors . Human Mutation 30, 1-5.

    Franco, E.L., Duarte-Franco, E., and Ferenczy, A. (2001). Cervical cancer: epidemiology, prevention and the role of human papillomavirus infection. CMAJ 164, 1017-1025.

    Funasaka, T., Hu, H., Hogan, V., and Raz, A. (2007). Down-regulation of phosphoglucose isomerase/autocrine motility factor expression sensitizes human fibrosarcoma cells to oxidative stress leading to cellular senescence. J Biol Chem 282, 36362-36369.

    Hagopian, K., Ramsey, J.J., and Weindruch, R. (2004). Krebs cycle enzymes from livers of old mice are differentially regulated by caloric restriction. Exp Gerontol 39, 1145-1154.

    Hartong, D.T., Dange, M., McGee, T.L., Berson, E.L., Dryja, T.P., and Colman, R.F. (2008). Insights from retinitis pigmentosa into the roles of isocitrate dehydrogenases in the Krebs cycle. Nat Genet 40, 1230-1234.

    He, Y., Leung, K.W., Zhang, Y.H., Duan, S., Zhong, X.F., Jiang, R.Z., Peng, Z., Tombran-Tink, J., and Ge, J. (2008). Mitochondrial complex I defect Induces ROS release and degeneration in trabecular meshwork cells of POAG patients: protection by antioxidants. Invest Ophthalmol Vis Sci 49, 1447-1458.

    Kil, I.S., Kim, S.Y., Lee, S.J., and Park, J.W. (2007). Small interfering RNA-mediated silencing of mitochondrial NADP+-dependent isocitrate dehydrogenase enhances the sensitivity of HeLa cells toward tumor necrosis factor-alpha and anticancer drugs. Free Radic Biol Med 43, 1197-1207.

    Kil, I.S., Shin, S.W., Yeo, H.S., Lee, Y.S., and Park, J.W. (2006). Mitochondrial NADP+-dependent isocitrate dehydrogenase protects cadmium-induced apoptosis. Mol Pharmacol 70, 1053-1061.

    Kim, J.W., and Dang, C.V. (2005). Multifaceted roles of glycolytic enzymes. Trends Biochem Sci 30, 142-150.

    Ko, Y.H., Pedersen, P.L., and Geschwind, J.F. (2001). Glucose catabolism in the rabbit VX2 tumor model for liver cancer: characterization and targeting hexokinase. Cancer Lett 173, 83-91.

    Kurtoglu, M., Gao, N., Shang, J., Maher, J.C., Lehrman, M.A., Wangpaichitr, M., Savaraj, N., Lane, A.N., and Lampidis, T.J. (2007). Under normoxia, 2-deoxy-D-glucose elicits cell death in select tumor types not by inhibition of glycolysis but by interfering with N-linked glycosylation. Mol Cancer Ther 6, 3049-3058.

    Lee, J.H., Yang, E.S., and Park, J.W. (2003). Inactivation of NADP+-dependent isocitrate dehydrogenase by peroxynitrite. Implications for cytotoxicity and alcohol-induced liver injury. J Biol Chem 278, 51360-51371.

    Lee, S.M., Park, S.Y., Shin, S.W., Kil, I.S., Yang, E.S., and Park, J.W. (2009). Silencing of cytosolic NADP(+)-dependent isocitrate dehydrogenase by small interfering RNA enhances the sensitivity of HeLa cells toward staurosporine. Free Radic Res 43, 165-173.

    Lev Osherovich, (2008) Hitting cancer’s sweet spot. Targets & mechanisms 1-3.

    Liu, H., Hu, Y.P., Savaraj, N., Priebe, W., and Lampidis, T.J. (2001). Hypersensitization of tumor cells to glycolytic inhibitors. Biochemistry 40, 5542-5547.

    Liu, H., Savaraj, N., Priebe, W., and Lampidis, T.J. (2002). Hypoxia increases tumor cell sensitivity to glycolytic inhibitors: a strategy for solid tumor therapy (Model C). Biochem Pharmacol 64, 1745-1751.

    Ma, W., Sung, H.J., Park, J.Y., Matoba, S., and Hwang, P.M. (2007). A pivotal role for p53: balancing aerobic respiration and glycolysis. J Bioenerg Biomembr 39, 243-246.

    Maher, J.C., Krishan, A., and Lampidis, T.J. (2004). Greater cell cycle inhibition and cytotoxicity induced by 2-deoxy-D-glucose in tumor cells treated under hypoxic vs aerobic conditions. Cancer Chemother Pharmacol 53, 116-122.

    Mazurek, S., Boschek, C.B., Hugo, F., and Eigenbrodt, E. (2005). Pyruvate kinase type M2 and its role in tumor growth and spreading. Semin Cancer Biol 15, 300-308.

    Mehta, S.L., and Li, P.A. (2009). Neuroprotective role of mitochondrial uncoupling protein 2 in cerebral stroke. J Cereb Blood Flow Metab 29, 1069-1078.

    Moreno-Sanchez, R., Rodriguez-Enriquez, S., Marin-Hernandez, A., and Saavedra, E. (2007). Energy metabolism in tumor cells. FEBS J 274, 1393-1418.

    Olovnikov, I.A., Kravchenko, J.E., and Chumakov, P.M. (2009). Homeostatic functions of the p53 tumor suppressor: regulation of energy metabolism and antioxidant defense. Semin Cancer Biol 19, 32-41.

    O. Warburg, (1956) On the Origin of Cancer Cells. Science 123, 309-314.

    Pan, J.G., and Mak, T.W. (2007). Metabolic targeting as an anticancer strategy: dawn of a new era? Sci STKE 2007, pe14.

    Parsons, D.W., Jones, S., Zhang, X., Lin, J.C., Leary, R.J., Angenendt, P., Mankoo, P., Carter, H., Siu, I.M., Gallia, G.L., et al. (2008). An integrated genomic analysis of human glioblastoma multiforme. Science 321, 1807-1812.

    Pastorino, J.G., Shulga, N., and Hoek, J.B. (2002). Mitochondrial binding of hexokinase II inhibits Bax-induced cytochrome c release and apoptosis. J Biol Chem 277, 7610-7618.

    Pedersen, P.L. (2007a). The cancer cell's "power plants" as promising therapeutic targets: an overview. J Bioenerg Biomembr 39, 1-12.

    Pedersen, P.L. (2007b). Warburg, me and Hexokinase 2: Multiple discoveries of key molecular events underlying one of cancers' most common phenotypes, the "Warburg Effect", i.e., elevated glycolysis in the presence of oxygen. J Bioenerg Biomembr 39, 211-222.
    Pelicano, H., Martin, D.S., Xu, R.H., and Huang, P. (2006). Glycolysis inhibition for anticancer treatment. Oncogene 25, 4633-4646.

    Peng, S.Y., Lai, P.L., Pan, H.W., Hsiao, L.P., and Hsu, H.C. (2008). Aberrant expression of the glycolytic enzymes aldolase B and type II hexokinase in hepatocellular carcinoma are predictive markers for advanced stage, early recurrence and poor prognosis. Oncol Rep 19, 1045-1053.

    Reisch, A.S., and Elpeleg, O. (2007). Biochemical assays for mitochondrial activity: assays of TCA cycle enzymes and PDHc. Methods Cell Biol 80, 199-222.

    Robey, R.B., and Hay, N. (2006). Mitochondrial hexokinases, novel mediators of the antiapoptotic effects of growth factors and Akt. Oncogene 25, 4683-4696.

    Samudio, I., Fiegl, M., and Andreeff, M. (2009). Mitochondrial uncoupling and the Warburg effect: molecular basis for the reprogramming of cancer cell metabolism. Cancer Res 69, 2163-2166.

    Scaduto, R.C., Jr., and Grotyohann, L.W. (1999). Measurement of mitochondrial membrane potential using fluorescent rhodamine derivatives. Biophys J 76, 469-477.

    Shin, S.W., Kil, I.S., and Park, J.W. (2008). Silencing of mitochondrial NADP+-dependent isocitrate dehydrogenase by small interfering RNA enhances heat shock-induced apoptosis. Biochem Biophys Res Commun 366, 1012-1018.

    Soundar, S., O'Hagan, M., Fomulu, K.S., and Colman, R.F. (2006). Identification of Mn2+-binding aspartates from alpha, beta, and gamma subunits of human NAD-dependent isocitrate dehydrogenase. J Biol Chem 281, 21073-21081.

    Thompson, C.B. (2009). Metabolic enzymes as oncogenes or tumor suppressors. N Engl J Med 360, 813-815.

    Tsutsumi, S., Hogan, V., Nabi, I.R., and Raz, A. (2003). Overexpression of the autocrine motility factor/phosphoglucose isomerase induces transformation and survival of NIH-3T3 fibroblasts. Cancer Res 63, 242-249.

    Vander Heiden, M.G., Cantley, L.C., and Thompson, C.B. (2009). Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029-1033.

    Wang, X., Wang, H.K., McCoy, J.P., Banerjee, N.S., Rader, J.S., Broker, T.R., Meyers, C., Chow, L.T., and Zheng, Z.M. (2009). Oncogenic HPV infection interrupts the expression of tumor-suppressive miR-34a through viral oncoprotein E6. RNA 15, 637-647.

    Wu, M.T., Wu, R.H., Hung, C.F., Cheng, T.L., Tsai, W.H., and Chang, W.T. (2005). Simple and efficient DNA vector-based RNAi systems in mammalian cells. Biochem Biophys Res Commun 330, 53-59.

    Yanagawa, T., Funasaka, T., Tsutsumi, S., Watanabe, H., and Raz, A. (2004).Novel roles of the autocrine motility factor/phosphoglucose isomerase in tumor malignancy. Endocr Relat Cancer 11, 749-759.

    下載圖示 校內:2014-08-13公開
    校外:2014-08-13公開
    QR CODE