簡易檢索 / 詳目顯示

研究生: 林冠翰
LIN, GUAN HAN
論文名稱: 模組化之多船航行操縱模式應用於模擬機上之研究
Study on the Application of Modularized Multi-ship Steering Model to the Simulator
指導教授: 方銘川
Fang, Ming-Chung
學位類別: 碩士
Master
系所名稱: 工學院 - 系統及船舶機電工程學系
Department of Systems and Naval Mechatronic Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 83
中文關鍵詞: 操船模擬系統多船航行岸吸效應坐底效應AutoCAD VBA拖船頂推船作業
外文關鍵詞: Ship simulator system, Multi-ship sailing, Bank suction effect, Ship squat effect, AutoCAD VBA, Tugboat operation
相關次數: 點閱:125下載:20
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究可分為兩大部分,第一部分為考慮多船間各相互影響效應的干擾力於船體
    操縱性能上的影響,設計並開發船舶互動影響、船舶岸吸、船舶坐底效應計算模組。
    第二部分為拖船頂推船作業效應的計算模組開發,呈現拖船頂推船與被頂推目標船之
    船體運動模擬。本文可判斷場域內多艘船之間的流體相互影響作用力,並反映在船體
    運動表現上,且可即時判斷各船的離岸和距底距離,並計算船舶受到的各效應影響力,
    並將各效應模組化以利模擬機之應用。
      研究方法首要為設計建立一套可掌握多船操航情況,並判斷各船及船岸間相互關
    係與各船頂推座標點之監控模組,其可即時向各船傳送各種相互影響效應與拖船頂推
    船之計算需求及條件,且彙集各船之模擬結果,做為下一模擬瞬時之基本資訊。為利
    於即時監視各船的操航表現,本文利用 AutoCAD 製圖軟體創建類海圖可視化介面,
    其運作程式係使用VBA程式進行模組開發。船舶互動影響效應和岸吸效應計算方式,
    乃利用將船體劃分為區段,透過柏努利方程式來進行個別運算,而坐底效應,則是應
    用 Barrass 提出之經驗公式,可依據航道形狀(阻塞因子)、水深及船隻吃水間之關
    係,研發坐底效應之計算模組,至於拖船頂推船作業效應,則是利用 VBA 功能取得
    船隻間交集的座標點,利用拖船衝量對被頂推船造成之力與力矩來進行運算,上述計
    算船體六度運動方程式之數學模型,透過羅志宏推導出結合耐海性與操縱性的非線性
    六度運動方程式為基礎,由 Fortran 程式開發,設計一套多船船體運動之數值模擬程
    式,且此兩套計算功能能夠於操船模擬系統中同時執行,並整合入操船模擬程式中,
    以提高操船模擬系統整體擬真程度,可供船員訓練時達到更好的效果。

    The main purpose of this paper can be divided into two parts. The first part is to consider the influence of the interfering force of each interaction effect among multiple ships on the hull maneuverability, and design and develop the calculation module of the ship interaction effect, ship bank suction, and ship squat effect. The second part is the development of the calculation module for the tugboat operation effect, which presents the hull motion simulation of the tugboat pushing ship and the pushed target ship. In this paper, the fluid interaction force between multiple ships in the field can be determined and reflected in the motion performance of the hull, and it can determine the distance between the bank and the bottom of each ship immediately, calculate the influence of each effect on the ship, and modularize each effect to facilitate the application of the simulator.
    The research method is mainly to design and establish a setting for controlling the
    situation for multi-ship sailing, define the interrelationship between ships and banks, and get the monitoring module of each ship’s push-up coordinate point, which can instantly deliver the interrelationship to each ship, also the calculation requirements and conditions for tugboat pusher, and collect the simulation results of each ship as the basic information for the next simulation moment.
    To make it more precise to monitor the sailing performance of each ship, in this paper, we use AutoCAD drawing software to create a chart-like visualization interface, and its operating program also uses the VBA program for module development. For the calculating method of ship interactions and bank suction effects, all use the division of the hull into sections and perform individual calculations through the Bernoulli equation, and the ship squat effect; is based on the empirical formula proposed by Barrass. According to the relationship between the channel shape (blocking factors), the water depth, and the draft of the ship, a calculation module for the ship squat effect can be researched and developed, and as for the pushing ship operation of the tugboat, the VBA function is used to obtain the coordinate points of the intersection between the ships, and the force and moment caused by the tugboat impulse to the pushed ship are used to calculate. The above mathematical model for calculating the six-degree motion equation of the hull; is based on Luo’s deriving of a nonlinear six-degree equation of motion combining sea resistance and maneuverability, and developed by Fortran, a set of numerical simulation programs for multi-vessel hull motion is designed, and these two sets of calculation functions can be carried out simultaneously in the ship maneuvering simulation system, and integrated into the ship maneuvering simulation program improves the overall fidelity of the ship maneuvering simulation system, which can be used for the crew training to achieve better results.

    摘 要 I Abstract II 誌 謝 XXI 目 錄 XXII 表 目 錄 XXIV 圖 目 錄 XXV 符 號 說 明 XXVIII 第1章 緒論 1  1-1 研究動機 1  1-2 文獻回顧 2  1-3 本文架構 4 第2章 數學模型 5  2-1 座標系與運動方程式 5  2-2 船舶互動影響效應 8  2-3 船舶岸吸效應 12  2-4 船舶坐底效應 14  2-5 拖船頂推船作業效應 17 第3章 操船模組化研究方法 20  3-1 多船操航監控模組 20   3-1-1 多船操航監控模組架構 20   3-1-2 多船操航監控模組功能之運作 22   3-1-3 多船操航監控模組之操作及顯示介面 28   3-1-4 港域及船舶模型 30   3-1-5 可視化介面之圖形呈現技術 32  3-2 船舶互動影響效應計算模組 34  3-3 船舶岸吸效應計算模組 37  3-4 船舶坐底效應計算模組 39  3-5 拖船頂推船作業效應計算模組 41 第4章 結果與討論 44  4-1 計算船型 45  4-2 多船各效應模擬結果 49   4-2-1 船舶互動影響效應模擬結果 49   4-2-2 船舶岸吸效應模擬結果 56   4-2-3 船舶坐底效應模擬結果 58   4-2-4 多船各效應混合交互發生模擬結果 61  4-3 拖船頂推船作業效應模擬結果 64  4-4 虛擬實境應用 72  4-5 系統執行效能測試 75 第5章 結論與未來展望 78 參考文獻 81 附件A:非線性操縱性導數 83

    1. Gronarz, A., “The Influence of Inhomogeneous Current on the Ships Motion”, International Conference on Marine Simulation and Ship Manoeuvrability, pp. M33-M39, 2009.
    2. Hamamoto, M. and Kim, Y.S., “A new coordinate system and the equations describing maneuvering motion of a ship in waves (in Japanese)”, Journal of the Society of Naval Architects of Japan, Vol. 173, pp. 209-220, 1993.
    3. Hamamoto, M., Matsuda, A., and Ise, Y., “Ship motion and the dangerous zone of a ship in severe following seas (in Japanese)”, Journal of the Society of Naval Architects of Japan, Vol. 175, pp. 69-78, 1994.
    4. Inoue, S., Hirano, M. and Kijima, K.,“Hydrodynamic derivatives on ship manoeuvring”, International Shipbuilding Progress, Vol. 28, pp. 112-125, 1981.
    5. Mohammadreza Fathi Kazerooni and Mohammad Saeed Seif, “Experimental Study of a Tanker Ship Squat in Shallow Water”,Center of Excellence in Hydrodynamics & Dynamics of Marine Vehicles, Sharif University of Technology,Tehran, Iran, 2014.
    6. N Jayarathne, Z Leong, D Ranmuthugala, “Hydrodynamic Interaction Effects on Tugs Operating within the Midship Region alongside Large Ships”,Engineering, Built Environment and Spatial Sciences, 9th International Research Conference-KDU, Sri Lanka , 2021.
    7. Petru Sergiu SERBAN and Valeriu Nicolae PANAITESCU, “Comparison Between Formulas Of Maximum Ship Squat”,Mircea cel Batran Naval Academy Scientific Bulletin, Volume XIX – Issue 1, 2016.
    8. Seung-Min Lee, Jong Hyeok Lee, Myung-Il Roh , Ki-Su Kim,Seung-Ho Ham and Hye-Won Lee, “An optimization model of tugboat operation for conveying a large surface vessel”, Journal of Computational Design and Engineering, 0(0), 1–22, 2021.
    9. Tuck, E.O., ”Hydrodynamic Problems of Ships in Restricted Waters”, Ann. Rev. Fluid Mech. 10, pp.33–46, 1978.
    10. Varyani, K.S., McGregor, R.C., Krishnankutty, P. and Thavalingam, A., “New Empirical and Generic Models to Predict Interaction Forces for Several Ships in Encounter and Overtaking Manoeuvres in a Channel”,Int. Shipbuild. Progr., 49, No. 4, pp.237-262, 2002.
    11. Xu, Y.M., Zou, Z.J., Liu, M.J., Varyani, K.S., “Study on Critical-uncontrollable Hydrodynamic Interaction between Ships”, The Eighteenth International Offshore and Polar Engineering Conference, pp.354-359, 2008.
    12. Yoshimura, Y. and Nomoto, K., “Modeling of manoeuvring behavior of ships with a propeller idling, boosting and reversing (in Japanese)”, Journal of the Society of Naval Architects of Japan, Vol. 144, pp. 57-69, 1978.
    13. 徐玉樹,順浪中船舶之穩度安全性,國立成功大學造船暨船舶機械工程研究所碩士論文,民國八十六年。
    14. 宏瞻資訊譯,AutoCAD 2000 ActiveX與VBA開發人員手冊,第三波資訊股份有限公司,民國八十八年。
    15. 宏瞻資訊譯,AutoCAD 2000 ActiveX與VBA參考手冊,第三波資訊股份有限公司,民國八十八年。
    16. 羅志宏,船隻在順波中航向穩定性與運動之分析,國立成功大學造船暨船舶機械工程研究所碩士論文,民國九十年。
    17. 林克衛,虛擬實境於船舶操縱模擬系統之應用,國立成功大學造船暨船舶機械工程研究所碩士論文,民國九十年。
    18. 周宗蔚,“雙船於不規則波中之虛擬操縱系統",國立成功大學系統及船舶機電工程研究所碩士論文,民國九十四年。
    19. 羅志宏,船舶在波浪中之非線性運動操控模式之探討,國立成功大學系統及船舶機電工程研究所博士論文,民國九十五年。
    20. 陳冠亨,應用虛擬實境技術作操船運動與三維波浪之模擬,國立成功大學系統及船舶機電工程研究所碩士論文,民國九十六年。
    21. 陳玟蓁,潮流、船舶干擾及岸吸效應對船舶操縱之影響,國立成功大學系統及船舶機電工程研究所碩士論文,民國九十九年。
    22. 陳峻偉,一種模擬在波浪中具岸壁影響之船舶操縱運動的簡易方法,國立成功大學系統及船舶機電工程研究所碩士論文,民國一百年。
    23. 蔡坤遠,貨櫃船迴旋特性於操船避碰之研究,國立臺灣海洋大學運輸科學研究所碩士論文,民國一百零二年。

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE