| 研究生: |
林建宇 Lin, Chien-Yu |
|---|---|
| 論文名稱: |
混合火箭N2O旋流噴注器之噴霧特性研究 Spray Characteristics of Nitrous Oxide Pressure-Swirl Injector for Hybrid Rockets |
| 指導教授: |
趙怡欽
Chao, Yei-Chin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 59 |
| 中文關鍵詞: | 混合火箭 、氧化亞氮N2O 、噴注器 、壓力艙 、PLIF |
| 外文關鍵詞: | Hybrid rocket, Nitrous Oxide (N2O), High pressure chamber, Injector, Planar laser-induced fluorescence (PLIF) |
| 相關次數: | 點閱:161 下載:24 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,混合火箭受到世界各地研究單位所看重,因其改善了固態火箭在燃料操作上的危險,也減低液態火箭系統上的複雜度;而其低成本及低污染的可能性使其成為探索高空科學研究的一大利器,舉凡學校之研究單位到國家等級之太空中心皆可投入此相對安全與低成本之研究。然而,混合火箭雖有以上優點,其液態氧化劑與固態燃料在混合機制上的搭配,將會直接影響發動機之性能,因此,將液態氧化劑注入燃燒室之噴注器的設計即成為混合火箭設計上的主要關鍵。過去有許多文獻皆在探討不同流道設計之噴注器對於發動機性能的影響,其結果顯示在以液態N2O作為氧化劑的情況下,加入旋流效果之旋流式噴注器較傳統軸向式噴注器及蓮蓬頭式噴注器其發動機性能明顯提升。由於液態N2O在常溫下,蒸氣壓相對其他流體高,自加壓效果對於混合火箭在氧化劑上的選擇實為相當有利。然而,N2O為一強氧化劑,且因其高蒸氣壓的特性,使之在冷流噴霧的實驗觀測研究上具有相當的難度。過去已有許多在使用N2O進行實驗時,發生爆炸造成嚴重傷亡的案例;因此,史丹佛大學團隊嘗試將物理性質相似的CO2與N2O進行分析與比較,發現CO2與N2O在許多熱力性質的差異度皆小於5%,故提出以CO2取代N2O做為冷流實驗之工作流體,降低安全風險。本研究透過CO2模擬N2O做為觀測流體,於高壓噴霧觀測艙中觀察高壓環境時的噴霧情況,並導入PLIF光學量測法,更進一步觀察在不同出口距離的二維噴霧機率分佈。經實驗證實,透過此分析方法可以取得噴注器在不同出口距離的質量機率分佈;且發現隨著出口距離越大,其噴霧範圍越廣,且質量分佈越均勻。
Self-pressurizing rocket propellants are currently gaining popularity in the propulsion community, especially in hybrid rocket applications. Self-pressurizing oxidizers with its high vapor pressure, can be driven out from the storage tank and injected into combustion chamber without additional complicated pressurization systems. Among the various self-pressurizing oxidizers, nitrous oxide (N2O) is a highly regarded candidate, especially for hybrid rocket applications. In order to effectively atomize the liquid oxidizer, pressure-swirl injector has been widely used. With its inherent high vapor pressure, nitrous oxide spray characteristics in high pressure environments has been an important topics of intensive research interest. However, nitrous oxide is a strong oxidizer and may cause dramatic damage in improper handling. For safety consideration, carbon dioxide (CO2), with identical molecular weight and similar vapor pressure as well as physical and thermodynamic properties is identified as a possible analogous simulant for nitrous oxide (N2O) in order to greatly reduce hazards, environmental impact, and costs. A novel quantitative Planar Laser-Induced Fluorescence (PLIF) method is adapted and developed to characterize the mass distribution of the CO2 spray. A new facility is also developed in this study for the characterization of pressure-swirl injector atomization and vaporization using high speed video photography. A description of the new CO2 Planar Laser-Induced Fluorescence (PLIF) technique and test apparatus is presented in this thesis, along with details of the spray experiments using carbon dioxide as a simulant for nitrous oxide. Preliminary test results suggest that introducing the PLIF method into the cold flow test can successfully reveal the oxidizer mass flow distribution. In other words, this method not only can effectively observe the vaporization process of high vapor pressure fluid, but also can be used to assist the design of nitrous oxide injectors.
[1] Altman, D., and Holzman, A.,, “Overview and History Rocket Propulsion,” Fyndamental of Hybrid Rocket Combustion and Propulsion, edited by M. Chiaverini and K.K., Kuo, Progress in Astronautics and Aeronautics, Vol.218, p. 3, 2006.
[2] E. Gamper, R. Hink, “DESIGN AND TEST OF NITROUS OXIDE INJECTORS FOR A HYBRID ROCKET ENGINE,” Deutscher Luft - and Raumfahrtkongress, Stuttgart, Germany, 2013.
[3] M. Schulze, L. Bock, T. Sattelmayer, W. Polifke, “Arbeitsunterlagen zu den Vorlesungen,” Warmetransportphanomene und Stoffubertragung, 2013.
[4] B. M. Schneider, “Experimentelle Untersuchungen zur Spraystruktur in transienten, verdampfenden und nicht verdampfenden Brennstoffstrahlen unter Hockdruck,” 2003.
[5] B. S. Waxman, J. E. Zimmerman, B. J. Cantwell, and G. G. Zilliac, “Mass Flow Rate and Isolation Characteristics of Injectors for Use with Self-Pressurizing Oxidizers in Hybrid Rockets,” AIAA, 14 - 17 July 2013.
[6] S. R. Gomes, L. Rocco Junior, J. A. F. F. Rocco, and K. Iha, “Design and Testing of a Hybrid Rocket Motor,” AIAA, 31 July 2011.
[7] N. Bellomo, F. Barato, M. Faenza, M. Lazzarin and A. Bettella, D. Pavarin, “Numerical and Experimental Investigation on Vortex Injection in Hybrid Rocket Motors,” AIAA, 31 July 2011.
[8] M. Horvay and W. Leuckel, “Experimental and Theoretical Investigation of Swirl Nozzles for Pressure-Jet Atomization,” German Chemical Engineering, 第9冊, pp. 276-283, 1986.
[9] M. H. Summers and J. K. Villarreal, “Small-Scale Hybrid Rocket Test Stand and Characterization of Swirl Injectors,” AIAA, 14 - 17 July 2013.
[10] A. H. Lefebvre, Atomization and Sprays, Hemisphere Publishing Corporation, 1989.
[11] A. H. A. Hamid, R. Atan, M. H. M. Noh, H. Rashid, “SPRAY CONE ANGLE AND AIR CORE DIAMETER OF HOLLOW CONE SWIRL ROCKET INJECTOR,” IIUM Engineering Journal, 2011.
[12] J. E. Zimmerman, B. S. Waxman, B. J. Cantwell, G. G. Zilliac, “COMPARISON OF NITROUS OXIDE AND CARBON DIOXIDE WITH APPLICATIONS TO SELF-PRESSURIZING PROPELLANT TANK EXPULSION DYNAMICS”.
[13] Lemmon, E. W., Huber, M. L., and McLinden, M. O., “NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties (REFPROP), Version 9.0,” Physical and Chemical Properties ..., 2010.
[14] B. S. Waxman, B. J. Cantwell, and G. Zilliac, “Effects of Injector Design and Impingement Techniques on the Atomization of Self-Pressurizing Oxidiziers,” AIAA, 30 July 2012.
[15] T. Hori, “Impregnation of fluorescence dyes into polymer optical fibers using carbon dioxide fluids,” 2011.
[16] C. Zhao, J. Wang, I. Tabata, T. Hori, “Solubility of Rhodamine B in Supercritical Carbon Dioxide Fluids with or without Cosolvent,” Advanced Materials Research, 332-334, pp. 146-151, 2011.
[17] M. Banchero, A. Ferri, L. Manna, “The phase partition of disperse dyes in the dyeing of polyehylene terephthalate with a supercritical CO2/methanol mixture,” The Journal of Supercritical Fluids, 第48冊, pp. 72-78, 2009.
[18] Z. Huang, S. Kawi, and Y. C. Chiew, “Solubility of cholesterol and its esters in supercritical carbon dioxide with and without cosolvents,” The Journal of Supercritical Fluids, 第30冊, pp. 25-39, 2004.
[19] C. C. Tsai, H. M. Lin, and M. J. Lee, “Solubility of disperse yellow 54 in supercritical carbon dioxide with or without cosolvent,” Fluid Phase Equilibria, 第 260冊, pp. 287-294, 2007.
[20] J. L. Li, J. S. Jin, Z. T. Zhang, and X. M. Pei, “Equilibrium solubilities of a p-toluenesulfonamide and sulfanilamide mixture in supercritical carbon dioxide with and without ethanol,” The Journal of Supercritical Fluids, 第52冊, pp. 11-17, 2010.
[21] H. K. Bae, J. H. Jeon, H. Lee, “Influence of co-solvent on dye solubility in supercritical carbon dioxide,” Fluid Phase Equilibria, 222-223, pp. 119-125, 2004.
[22] B. Wischnewski, “peace software,” [線上]. Available: www.peacesoftware.de/einigewerte/co2_e.html.
[23] TEGA, “Saturation Table CO2,” [線上]. Available: www.tega.de.