| 研究生: |
張瀚丞 Chang, Han-chen |
|---|---|
| 論文名稱: |
在HF水溶液中氧化劑和溫度對矽奈米線形成速率及微結構之影響 Effects of oxidizing agents and temperature on the formation rate and microstructure of Si nanowires fabricated in aqueous HF solutions |
| 指導教授: |
林文台
Lin, Wen-tai |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 71 |
| 中文關鍵詞: | 矽奈米線 、氧化劑 、氟化氫 |
| 外文關鍵詞: | HF, Si nanowires, oxidizing agents |
| 相關次數: | 點閱:66 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究為探討在15~50℃,10~40分鐘不同氧化劑如AgNO3、Fe(NO3)3以及H2O2之HF水溶液對銀顆粒催化蝕刻矽奈米線形成速率及微結構之影響。矽奈米線的長度隨著蝕刻時間增加以及蝕刻溫度的增高而增長。ㄧ般來說,矽奈米線陣列在HF、HF/Fe(NO3)3以及HF/AgNO3水溶液中較為平整,但是在HF/H2O2水溶液中則會產生參差不齊的現象。蝕刻時間在20分鐘以內時矽奈米線在不同溶液中之形成速率由小到大依次為HF、HF/Fe(NO3)3、HF/AgNO3、HF/H2O2,但是時間在30分鐘以上時,矽奈米線在HF/AgNO3溶液之形成速率變為最快。由TEM觀察,在矽奈米線表面發現許多奈米銀顆粒大小約為5~30nm。在蝕刻矽基板的過程中,這些奈米銀顆粒會同時催化蝕刻生長出來之矽奈米線。因此在HF/H2O2溶液中蝕刻反應速率最快造成矽奈米線表面的粗糙及斷裂,使得當時間超過30分鐘矽奈米線之形成速率會下降。在本研究當中,在HF/AgNO3溶液中生成矽奈米線其表面平順且有較高之形成速率。
Effects of various oxidizing agents such as AgNO3, Fe(NO3)3, and H2O2 on the formation rate and microstructure of Si nanowires (SiNWs) by etching the Si substrates in aqueous HF solutions with the Ag catalyst at 15-50˚C for 10-40 min were studied. The length of SiNWs increased with the etching time and etching temperature. In general, the SiNW arrays fabricated in HF, HF/Fe(NO3)3, and HF/AgNO3 solutions, respectively, were smooth, while those fabricated in the HF/H2O2 solution were rough. For the etching time less than 20 min, the formation rate of SiNWs increased with the etching solutions in the sequence of HF, HF/Fe(NO3)3, HF/AgNO3, and HF/H2O2, whereas for the etching time longer than 30 min, that of SiNWs in the HF/AgNO3 solution became fastest. From TEM observation, many small Ag nanoparticles, 5-30 nm in size, were present on the surface of SiNWs. During etching of Si substrates, these Ag nanoparticles can simultaneously catalyze the electroless etching of SiNWs. Therefore, the fastest etching of Si in the HF/H2O2 solution rendered the SiNWs to be severely rough and readily broken, resulting in the decline of the formation rate of SiNWs at a time longer than 30 min. In the present study, the SiNWs fabricated in the HF/AgNO3 solution showed a smooth surface and a higher formation rate.
參考文獻
1 R. Feynman, “Plenty of Room at the Bottom”, APS Annual Meeting (1959)
2 Sumio Iijima, Nature 354(7), 56, 1991.00001
3 馬振基主編, “奈米科技原理與應用”, 全華科技, 92年1月.
4 Zu Rong Dai, Zheng Wei Pan, Zhong L. Wang, Adv. Funct. Mater. 13(1), 9, (2003).
5 郭正次.朝春光編著, “奈米結構材料科學”, 全華科技, 93年4月, Chap.3.
6 盧永坤, “奈米科技概論”,滄海書局(2005)
7 N.G. Chopra, R.J. Luyken, K. Cherrey, V.H. Crespi, M.L. Cohen, S.G. Louie, and A. Zettl, Science 269, 966 (1995)
8 M. Terrones, W.K. Hsu, H. Terrones, J.P. Zhang, S. Romas, J.P. Hare, R. Castillo, K. Prassides, A.K. Cheetham, H.W. Kroto, and D.R.M. Walton, Chem. Phys. Lett. 259, 568 (1996)
9 K. Haraguchi, K. Hiruma, T. Katsuyama, K. Tominaga, M. Shirai, and T. Shimada, Appl. Phys. Lett. 69, 386 (1996)
10 D. Routkevitch, A.A. Tager, J. Haruyama, D. Almawlawi, M. Moskovits, and J.M. Xu, IEEE Trans. Electron Devices 43, 1646 (1996)
11 K. Hiruma, M. Yazawa, T. Katsuyama, K. Ogawa, K. Haraguchi, M. Koguchi, and H. Kakibayashi, J. Appl. Phys. 77, 447 (1995)
12 W. Han, S. Fan, Q. Li, and Y. Hu, Science 277, 1287 (1997)
13 Z.G. Bai, D.P. Yu, H.Z. Zhang, Y. Ding, Y.P. Wang, X.Z. Gai, Q.L. Hang, C.C. Xiong, and S.Q. Feng, Chem. Phys. Lett. 303, 311 (1999)
14 H. Dai, E.W. Wang, Y.Z. Lu, S.S. Fang, and C.M. Lieber, Nature 375, 769 (1995)
15 L.C. Qin, X. Zhao, K. Hirahara, Y. Miyamoto, Y. Ando, and S. Iijima, Nature 408, 50 (2000)
16 S.M. Lee, K.S. Park, Y.C. Chai, Y.S. Park, J.M. Bok, D.J. Bae, K.S. Nahm, Y.G. Choi, S.C. Yu, N. Kim, T. Frauenheim, Y.H. Lee, Synth. Met. 113, 209 (2000)
17 R.T. Yang, Carbon 38, 623 (2000)
18 J. Hu, T.W. Odom, and C.M. Lieber, Acc. Chem. Res. 32, 435 (1999)
19 C.L. Cheung, J.H. Hafner, T.W. Odom, K. Kim, and C. M. Lieber, Appl. Phys. Lett. 76, 3136 (2000)
20 H. Dai, J.H. Hafner, A.G. Rinzler, D.T. Colbert, R.E. Smalley, Nature 384, 147 (1996)
21 W.B. Choi, D.S. Chung, J.H. Kang, H.Y. Kim, Y.W. Jin, I.T. Han, Y.H. Lee, J.E. Jung, N.S. Lee, G.S. Park, and J.M. Kim, Appl. Phys. Lett. 75, 3129 (1999)
22 T. Rueckes, K. Kim, E. Joselevich, G.Y. Tseng, C.L Cheung, and C.M. Lieber, Science 289, 94 (2000)
23 J. Kong, N.R. Franklin, C. Zhou, M.G. Chapline, S. Peng, K. Cho, and H. Dai, Science 287, 622 (2000)
24 J. Kong, M.G. Chapline, H. Dai, Adv. Mater. 13, 1384 (2001)
25 A.P. Alivisatos, Science 271, 933 (1996)
26 F. Marlow, M.D. M McGehee, D. Zhao, B.F. Chmelka, and G.D. Stucky, Adv. Mater. 11, 632 (1999)
27 D.P. Yu, Q.L. Hang, Y. Ding, H.Z. Zhang, Z.G. Bai, J.J. Wang, Y.H. Zou, W. Qian, G.C. Xiong, and S. Q. Feng, Appl. Phys. Lett. 73, 3076 (1998)
28 R.S. Wagner, and W.C. Ellis, Appl. Physl. Lett. 4, 89 (1964)
29 R.S. Wagner, and W.C. Ellis, Trans. Met. Soc. AIME 233, 1053 (1965)
30 R.S. Wagner, “Whisker Technology”, Ed. A.P. Levitt, Wiley New York, pp.47-119 (1970)
31 K. Q. Peng, Y. J. Yan, S. P. Gao, J. Zhu, Adv. Mater. 2002, 14, 1164
32 K. Q. Peng, Y. J. Yan, S. P. Gao, J. Zhu, Adv. Funct. Mater. 2003,13, 127
33 K. Q. Peng, J. Zhu, Electrochem. Acta 2004, 49, 2563
34 K. Q. Peng, J. J. Hu, Y. J. Yan, Y. Wu, H. Fang, Y. Xu, S. T. Lee, and J. Zhu, Adv. Funct. Mater. 2006,16, 387~394
35 J. Westwater, D. P. Gosain, S. Tomiya, S. Usui, H. Ruda, J. Vac. Sci. Technol. B 1997, 15, 554
36 A. M. Morales, C. M. Lieber, Science 1998, 279, 208
37 N. Wang, Y. F. Zhang, Y. H. Tang, C. S. Lee, S. T. Lee, Appl. Phys. Lett. 1998, 73, 3902
38 D. P. Yu, Z. G. Bai, Y. Ding, Q. L. Hang, H. Z. Zhang, J. J. Wang,Y. H. Zou, W. Qian, G. C. Xiong, H. T. Zhou, S. Q. Feng, Appl. Phys. Lett. 1998, 72, 3458
39 Y. F. Zhang, Y. H. Tang, C. Lam, N. Wang, C. S. Lee, I. Bello, S. T.Lee, J. Cryst. Growth 2000, 212, 115
40 K. Q. Peng, J. Zhu, J. Electroanal. Chem. 2003, 558, 35.
41 P. Gorostiza, R. Diaz, J. Servat, F. Sanz, J. R. Morante, J. Electrochem.Soc. 1997, 144, 909
42 P. Gorostiza, M. A. Kulandainathan,R. Diaz, F. Sanz, P. Allongue, J. R. Morante, J. Electrochem. Soc. 2000, 147, 1026
43 S. Ye, T. Ichihara, K. Uosaki, J. Electrochem. Soc. 2001, 148, C421
44 G. J. Norga, M. Platero, K. A. Black, A J. Reddy, J. Michel, L. C. Kimerling, J. Electrochem. Soc. 1997, 144, 2801
45 V. Bertagna, C. Plougonven, F. Rouelle, M. Chemla, J. Electrochem. Soc. 1996, 143, 3532
46 L. A. Porter, H. C. Choi, A. E. Ribbe, J. M. Buriak, Nano Lett. 2002, 2, 1067
47 C. Carraro, L. Magagnin, R. Maboudian, Electrochem. Acta 2002, 47, 2583
48 L. Magagnin, R. Maboudian, C. Carraro, J. Phys. Chem. B 2002, 106, 401
49 J. Westwater, D. P. Gosain, S. Tomiya, S. Usui, H. Ruda, J. Vac. Sci. Technol. B 1997, 15, 554.
50 A. I. Hochbaum, R. Fan, R. R. He, P. D. Yang, Nano Lett. 2005, 5, 457.
51 H. Morinaga, M. Suyama, T. Ohmi, J. Electrochem. Soc. 1994, 141,2834
52 J. S. Kim, H. Morita, J. D. Joo, T. Ohmi, J. Electrochem. Soc.1997, 144, 3275
53 N. Mitsugi, K. Nagai, J. Electrochem. Soc. 2004, 151, G302
54 A. Jones, Chemical Principles
55 汪建民等人, “材料分析”, 中國材料科學學會 (1998)
56 X. J. Li, D. L. Zhu, Q. W. Chen, Y. H. Zhang, Appl. Phys. Lett. 1999,74, 389
57 L. T. Canham, Appl. Phys. Lett. 1990, 57, 1046.
58 T. Guo﹐P. Nikolaev﹐A. Thess﹐D. T. Colbert﹐R. E. Smalley﹐Chem. Phys. Lett. 243, 49 (1995)
59 B. D. Yao, Y. F. Chan, and N. Wang, Appl. Phys. Lett. 81, 757 (2002)
60 Z. W. Pan, Z. R. Dai, and Z. L. Wang, Science 291, 1947 (2001)
61 C. N. R. Rao, F. L. Deepak, G. Gundiah, and A. Govindaraj, Prog. Solid State Chem. 31, 5 (2003)
62 C. N. R. Rao, A. Govindaraj, F.L. Deepak, N. A. Gunari, and M. Nath, Appl. Phys. Lett. 78, 1853 (2001)
63 A. Govindaraj, F.L. Deepak, N.A. Gunari, C. N. R. Rao, Israel J. Chem. 41, 23 (2001)
64 C. N. R. Rao, G. Gundiah, F. L. Deepak, A. Govindaraj, and A. K. Cheetham, J. Mater. Chem. 14, 440 (2004)
65 Masaru Nagai, Electrochemical and Solid-State Lett. 10 (2) H43,(2007)
66 H. Y. Tuan, D. C. Lee, T. Hanrath, and B. A. Korgel, Chem. Mater. 17, 5705 (2005)
67 T. Hanrath and B. A. Korgel, Adv. Mater. 15, 437 (2003)
68 R. S. Wagner, and W. C. Ellis, Appl. Physl. Lett. 4, 89 (1964)