簡易檢索 / 詳目顯示

研究生: 方廷睿
Fang, Ting-Jui
論文名稱: 臺灣集水區水文記憶與遲滯特性分析
Analysis of Hydrological Memory and Hysteresis Characteristics in Taiwan’s Catchments
指導教授: 葉信富
Yeh, Hsin-Fu
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 189
中文關鍵詞: 水文記憶複合碎形去趨勢波動分析集水區遺忘曲線遲滯迴圈臺灣集水區
外文關鍵詞: Hydrological memory, Multifractal detrended fluctuation analysis, Catchment forgetting curve, Hysteresis loop, Taiwan's catchments
相關次數: 點閱:104下載:55
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氣候變遷加劇極端氣候事件,影響水文循環並凸顯理解水文記憶的重要性,水文記憶意指水文狀態對未來行為的影響。透過多尺度量化分析水文記憶與遲滯特性,說明水文系統內隱藏的動態規律,進而提升極端事件預測能力。本研究以臺灣44個集水區超過30年的水文資料為基礎,結合統計指標、碎形理論、集水區遺忘曲線與遲滯迴圈方法,不僅探討單一水文分量之記憶性,更分析各分量間的遲滯關係及作用機制。自相關分析結果顯示,降水與流量分別具有2至4個月及3至5個月的記憶時間,且呈現非穩態性,有助於深入了解內部結構。複合碎形去趨勢波動分析指出,流量呈現顯著長期正向持續性,有明顯多尺度差異,及以小波動事件主導的特徵,降水則偏向短期正向持續波動,事件尺度較一致,顯示降水長期波動結構相對單一。由集水區遺忘曲線顯示臺灣僅25%的集水區具顯著水文記憶,主要集中於西南部,水文記憶現象最顯著約35天,持續影響最久可達到50天,記憶特徵多出現在面積小於500 km²且基流指數較低的集水區,與坡度和降雨強度等因子無顯著關聯。遲滯迴圈分析顯示降水–流量和降水–地下儲水量多為逆時針迴圈,顯示降水普遍先於其餘水文反應,遲滯指數絕對值多介於0.3至0.6,反應輸入與反應間的時間差異;而地下儲水量–流量在中西部普遍為順時針迴圈,表現出由流量補注地下水的方向,並伴隨顯著的正值殘差,代表事件後仍有延續性反應。這些結果指出中西部地區降水後流量迅速上升但地下水補注遲滯,增加洪水風險。北部及東北部山區則由地下水補注河川流量,具有較佳的緩衝機制與恢復能力。研究結果證實臺灣集水區水文系統具有多尺度複雜性,透過量化水文記憶,更精準掌握極端水文事件之遲滯反應與作用機制,並作為未來水資源管理及水文預測的重要參考。

    Climate change intensifies extreme climate events, significantly affecting the hydrological cycle and highlighting the importance of understanding hydrological memory. Hydrological memory refers to how past hydrological states influence future responses. Quantifying memory and hysteresis characteristics at multiple scales can reveal hidden dynamics within hydrological systems, thereby improving the prediction of extreme events. This study analyzes over 30 years of hydrological data from 44 catchments across Taiwan, integrating statistical indicators, fractal theory, the catchment forgetting curve (CFC), and hysteresis loop analyses. It examines memory within individual hydrological components and the hysteresis relationships among these components. Autocorrelation analyses indicate effective memory durations of approximately 2–4 months for precipitation and 3–5 months for streamflow, both exhibiting non-stationary behavior, thus providing insights into internal hydrological structures. Multifractal detrended fluctuation analysis (MFDFA) demonstrates that streamflow exhibits significant long-term positive persistence, clear multi-scale variability, and dominance by small-magnitude events. In contrast, precipitation shows short-term positive persistence with more uniform event scales, indicating relatively simpler long-term fluctuation patterns. The catchment forgetting curve analysis reveals that only 25% of Taiwan’s catchments exhibit significant hydrological memory, mainly located in the southwestern region. The strongest memory effects typically last about 35 days, with persistence extending up to 50 days. Memory characteristics commonly appear in catchments smaller than 500 km² and with lower baseflow indices, but are not significantly correlated with slope or precipitation intensity. Hysteresis loop analyses show mainly anticlockwise loops for precipitation–streamflow and precipitation–groundwater storage, indicating precipitation generally precedes other hydrological responses. The absolute hysteresis indices mostly range between 0.3 and 0.6, reflecting the temporal lag between inputs and responses. Conversely, groundwater storage–streamflow relationships in central and western regions typically show clockwise hysteresis loops, suggesting streamflow contributes to groundwater recharge, accompanied by significant positive residual values, indicating persistent post-event responses. These findings suggest that, following precipitation, streamflow rapidly increases in central and western Taiwan, while groundwater recharge exhibits notable hysteresis, thus increasing flood risk. In contrast, northern and northeastern mountainous regions exhibit effective groundwater contributions to streamflow, providing better buffering mechanisms and recovery capacities. Overall, results confirm the multi-scale complexity of Taiwan's catchment hydrological systems. Quantifying hydrological memory enhances understanding of hysteresis effects during extreme hydrological events, providing critical references for water resource management and hydrological forecasting.

    Abstract I Acknowledgement IV Table of Contents V List of Tables VIII List of Figures IX Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Background 5 1.2.1 Hydrological Memory in a Single Hydrological Component 5 1.2.2 Hydrological Memory Among Multiple Hydrological Components 6 1.3 Research Objectives 11 1.4 Thesis Outlines 12 Chapter 2 Materials 14 2.1 Background of Taiwans Catchment 14 2.2 Dataset of the Study 15 Chapter 3 Methodology 17 3.1 Seasonal Mann-Kendall Trend Test (MK test) 17 3.2 Autocorrelation Function (ACF) 19 3.3 Seasonal Trend Decomposition Based on Locally Weighted Regression (STL) 20 3.4 Multifractal Detrended Fluctuation Analysis (MFDFA) 22 3.4.1 Detrended Fluctuation Analysis (DFA) 22 3.4.2 Multifractal Analysis (MF) 25 3.5 Sensitivity Analysis 29 3.5.1 Relative Streamflow Elasticity 29 3.5.2 Correlation Analysis 30 3.6 The "abcd" Model for Precipitation–Streamflow Simulation 31 3.7 Catchment Forgetting Curve (CFC) 36 3.8 Hysteresis Loop 39 Chapter 4 Results and Discussion 42 4.1 Single Hydrological Component Memory Characteristics Identification 42 4.1.1 Long-term Trend Detection and Spatial Distribution of Streamflow and Precipitation 42 4.1.2 Analysis of Effective Memory Time and Stationarity in Streamflow and Precipitation 45 4.1.3 Analyzing Multifractal Structure of Streamflow and Precipitation in Taiwan 49 4.2 Sensitivity of Streamflow to Hydrological Component 57 4.2.1 Sensitivity of Streamflow to Precipitation and Potential Evapotranspiratio 57 4.2.2 Determination of Different Temporal Scale Hydrological Memory Sensitivity 59 4.3 Groundwater Storage Fitting in the "abcd" Model Efficiency Simulation 61 4.3.1 Investigating Parameter Sensitivity and Simulation Performance across Catchments 61 4.3.2 Performance Evaluation of the "abcd" Model and Fitting Results for Sample Catchments 64 4.4 Hydrological Hysteresis Time in the Catchment 67 4.4.1 Detection of Significant Catchment Memory Characteristics Using Dual-Model Comparison 67 4.4.2 Quantifying Hysteresis Time Using Catchment Forgetting Curves 67 4.4.3 Geomorphological and Hydrological Controls on Memory Characteristics 70 4.5 Correlation Among Multiple Hydrological Components 73 4.5.1 Spatiotemporal Variations in Peak Timing of Precipitation, Groundwater Storage, and Streamflow 73 4.5.2 Hydrological Hysteresis Relationships among Precipitation, Groundwater Storage, and Streamflow 74 4.5.3 Assessing Hydrological Retention and Recovery Using Residual Indicators 79 Chapter 5 Conclusion and Suggestion 83 5.1 Conclusion 83 5.2 Suggestion 86 References 88 Appendix A-1 Resume A-69

    Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A., & Hegewisch, K. C. (2018). TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Scientific data, 5(1), 1-12.
    Adams, K. H., Reager, J. T., Rosen, P., Wiese, D. N., Farr, T. G., Rao, S., Haines, B. J., Argus, D. F., Liu, Z., & Smith, R. (2022). Remote sensing of groundwater: current capabilities and future directions. Water Resources Research, 58(10), e2022WR032219.
    Adarsh, S., Kumar, D. N., Deepthi, B., Gayathri, G., Aswathy, S., & Bhagyasree, S. (2019). Multifractal characterization of meteorological drought in India using detrended fluctuation analysis. International Journal of Climatology, 39(11), 4234-4255.
    Adarsh, S., Nityanjaly, L., Pham, Q. B., Sarang, R., Ali, M., & Nandhineekrishna, P. (2021). Multifractal characterization and cross correlations of reference evapotranspiration time series of India. The European Physical Journal Special Topics, 230(21), 3845-3859.
    Adarsh, S., Nourani, V., Archana, D. S., & Dharan, D. S. (2020). Multifractal description of daily rainfall fields over India. Journal of Hydrology, 586, 124913. https://doi.org/https://doi.org/10.1016/j.jhydrol.2020.124913
    Adarsh, S., & Reddy, M. J. (2021). Multi-scale spectral analysis in hydrology: from theory to practice. CRC Press.
    Agboma, C. O., & Lye, L. M. (2015). Hydrologic Memory Patterns Assessment over a Drought-Prone Canadian Prairies Catchment. Journal of Hydrologic Engineering, 20(7), 04014084. https://doi.org/doi:10.1061/(ASCE)HE.1943-5584.0001106
    Álvarez-Garretón, C., Boisier, J., Garreaud, R., Seibert, J., & Vis, M. (2021). Progressive water deficits during multiyear droughts in basins with long hydrological memory in Chile. Hydrology and Earth System Sciences, null, null. https://doi.org/10.5194/HESS-25-429-2021 ,
    Alvarez-Garreton, C., Boisier, J. P., Garreaud, R., Seibert, J., & Vis, M. (2021). Progressive water deficits during multiyear droughts in basins with long hydrological memory in Chile. Hydrology and Earth System Sciences, 25(1), 429-446.
    Anderson, B. J., Brunner, M. I., Slater, L. J., & Dadson, S. J. (2024). Elasticity curves describe streamflow sensitivity to precipitation across the entire flow distribution. Hydrol. Earth Syst. Sci., 28(7), 1567-1583. https://doi.org/10.5194/hess-28-1567-2024
    Andréassian, V., Coron, L., Lerat, J., & Le Moine, N. (2016). Climate elasticity of streamflow revisited–an elasticity index based on long-term hydrometeorological records. Hydrology and Earth System Sciences, 20(11), 4503-4524.
    Animashaun, I. M., Oguntunde, P., Olubanjo, O., & Akinwumiju, A. (2023). Analysis of variations and trends of temperature over Niger central hydrological area, Nigeria, 1911–2015. Physics and Chemistry of the Earth, Parts A/B/C, 131, 103445.
    Ariza-Villaverde, A. B., Pavón-Domínguez, P., Carmona-Cabezas, R., de Ravé, E. G., & Jiménez-Hornero, F. J. (2019). Joint multifractal analysis of air temperature, relative humidity and reference evapotranspiration in the middle zone of the Guadalquivir river valley. Agricultural and Forest Meteorology, 278, 107657.
    Bai, P., Liu, X., & Xie, J. (2021). Simulating runoff under changing climatic conditions: a comparison of the long short-term memory network with two conceptual hydrologic models. Journal of Hydrology, 592, 125779.
    Bati, H. G., Agumassie, T. A., Tegaye, T. A., & Belete, M. D. (2023). Effects of landscape attributes and climate variables on catchment hydrology. Environmental Systems Research, 12(1), 9. https://doi.org/10.1186/s40068-023-00290-y
    Berghuijs, W., & Kirchner, J. (2017). The relationship between contrasting ages of groundwater and streamflow. Geophysical Research Letters, 44, 8925 - 8935. https://doi.org/10.1002/2017GL074962 ,
    Berghuijs, W. R., Woods, R. A., Anderson, B. J., Hemshorn de Sánchez, A. L., & Hrachowitz, M. (2025). Annual memory in the terrestrial water cycle. Hydrology and Earth System Sciences, 29(5), 1319-1333.
    Brooks, P. D., Gelderloos, A., Wolf, M. A., Jamison, L. R., Strong, C., Solomon, D. K., Bowen, G. J., Burian, S., Tai, X., & Arens, S. (2021). Groundwater‐mediated memory of past climate controls water yield in snowmelt‐dominated catchments. Water Resources Research, 57(10), e2021WR030605.
    Brunner, M. I., & Naveau, P. (2023). Spatial variability in Alpine reservoir regulation: deriving reservoir operations from streamflow using generalized additive models. Hydrology and Earth System Sciences, 27(3), 673-687.
    Brunner, M. I., & Slater, L. J. (2022). Extreme floods in Europe: going beyond observations using reforecast ensemble pooling. Hydrology and Earth System Sciences, 26(2), 469-482.
    Calvin, K., Dasgupta, D., Krinner, G., Mukherji, A., Thorne, P. W., Trisos, C., Romero, J., Aldunce, P., Barrett, K., & Blanco, G. (2023). IPCC, 2023: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, Switzerland. (No Title).
    Carlier, C., Wirth, S. B., Cochand, F., Hunkeler, D., & Brunner, P. (2018). Geology controls streamflow dynamics. Journal of Hydrology, 566, 756-769. https://doi.org/https://doi.org/10.1016/j.jhydrol.2018.08.069
    Chen, H.-Y., Yeh, H.-F., Ke, C.-C., Yang, Y.-S., & Huang, C.-C. (2024). Deciphering inter-catchment groundwater flow: A water balance perspective in the Choshui River Basin, Taiwan. Journal of Hydrology: Regional Studies, 53, 101742. https://doi.org/https://doi.org/10.1016/j.ejrh.2024.101742
    Chen, Y.-Y., Huang, W., Wang, W.-H., Juang, J.-Y., Hong, J.-S., Kato, T., & Luyssaert, S. (2019). Reconstructing Taiwan’s land cover changes between 1904 and 2015 from historical maps and satellite images. Scientific Reports, 9(1), 3643. https://doi.org/10.1038/s41598-019-40063-1
    Chhabra, A., & Jensen, R. V. (1989). Direct determination of the f (α) singularity spectrum. Physical Review Letters, 62(12), 1327.
    Chi, G., Su, X., Lyu, H., Li, H., Xu, G., & Zhang, Y. (2022). Prediction and evaluation of groundwater level changes in an over-exploited area of the Baiyangdian Lake Basin, China under the combined influence of climate change and ecological water recharge. Environmental Research, 212, 113104.
    Chiew, F. H. (2006). Estimation of rainfall elasticity of streamflow in Australia. Hydrological Sciences Journal, 51(4), 613-625.
    Cleveland, R. B., Cleveland, W. S., McRae, J. E., & Terpenning, I. (1990). STL: A seasonal-trend decomposition. J. off. Stat, 6(1), 3-73.
    Council, N. R., Earth, D. o., Studies, L., Geosciences, C. o., Science, W., Board, T., & Sciences, C. o. O. i. t. H. (1991). Opportunities in the hydrologic sciences. National Academies Press.
    Dahlstedt, K., & Jensen, H. J. (2005). Fluctuation spectrum and size scaling of river flow and level. Physica A: Statistical Mechanics and its Applications, 348, 596-610.
    De Lavenne, A., Andréassian, V., Crochemore, L., Lindström, G., & Arheimer, B. (2022). Quantifying multi-year hydrological memory with Catchment Forgetting Curves. Hydrology and Earth System Sciences, 26(10), 2715-2732.
    De Lima, M., & Grasman, J. (1999). Multifractal analysis of 15-min and daily rainfall from a semi-arid region in Portugal. Journal of Hydrology, 220(1-2), 1-11.
    Deusdará-Leal, K., Mohor, G. S., Cuartas, L. A., Seluchi, M. E., Marengo, J. A., Zhang, R., Broedel, E., Amore, D. d. J., Alvalá, R. C., & Cunha, A. P. M. (2022). Trends and climate elasticity of streamflow in south-eastern Brazil basins. Water, 14(14), 2245.
    Drożdż, S., & Oświȩcimka, P. (2015). Detecting and interpreting distortions in hierarchical organization of complex time series. Physical Review E, 91(3), 030902.
    Duethmann, D., Blöschl, G., & Parajka, J. (2020). Why does a conceptual hydrological model fail to correctly predict discharge changes in response to climate change? Hydrol. Earth Syst. Sci., 24(7), 3493-3511. https://doi.org/10.5194/hess-24-3493-2020
    Fan, J., & Yao, Q. (2008). Nonlinear time series: nonparametric and parametric methods. Springer Science & Business Media.
    Fan, X., Goeppert, N., & Goldscheider, N. (2023). Quantifying the historic and future response of karst spring discharge to climate variability and change at a snow-influenced temperate catchment in central Europe. Hydrogeology Journal, 31(8), 2213-2229.
    Fang, T.-J., Chen, H.-Y., & Yeh, H.-F. (2025). Analysis of Hydrological Memory Characteristics in Taiwan’s Catchments. Atmosphere, 16(1), 19. https://www.mdpi.com/2073-4433/16/1/19
    Fowler, K., Knoben, W., Peel, M., Peterson, T., Ryu, D., Saft, M., Seo, K. W., & Western, A. (2020). Many commonly used rainfall‐runoff models lack long, slow dynamics: Implications for runoff projections. Water Resources Research, 56(5), e2019WR025286.
    Fowler, K. J., Peel, M. C., Western, A. W., Zhang, L., & Peterson, T. J. (2016). Simulating runoff under changing climatic conditions: Revisiting an apparent deficiency of conceptual rainfall‐runoff models. Water Resources Research, 52(3), 1820-1846.
    Frisch, U. (1985). Turbulence and predictability of geophysical fluid dynamics and climate dynamics. Proceedings of the International School of Physics" Enrico Fermi", Course LXXXVIII, Varenna, 1985.
    Fu, G., Charles, S. P., & Chiew, F. H. (2007). A two‐parameter climate elasticity of streamflow index to assess climate change effects on annual streamflow. Water Resources Research, 43(11).
    Garcia, M., Iravanloo, B. M., & Sivapalan, M. (2024). A diagnostic approach to modeling watersheds with human interference. Journal of Hydrology, 641, 131823.
    Gharari, S., & Razavi, S. (2018). A review and synthesis of hysteresis in hydrology and hydrological modeling: Memory, path-dependency, or missing physics? Journal of Hydrology, 566, 500-519.
    Gómez-Gómez, J., Carmona-Cabezas, R., Sánchez-López, E., Gutiérrez de Ravé, E., & Jiménez-Hornero, F. J. (2022). Multifractal fluctuations of the precipitation in Spain (1960–2019). Chaos, Solitons & Fractals, 157, 111909. https://doi.org/https://doi.org/10.1016/j.chaos.2022.111909
    Gómez-Gómez, J., Plocoste, T., Alexis, E., Jiménez-Hornero, F. J., Gutiérrez de Ravé, E., & Nuiro, S. P. (2023). Multifractal detrended fluctuation analysis of rainfall time series in the Guadeloupe archipelago. Journal of Hydrology, 626, 130377. https://doi.org/https://doi.org/10.1016/j.jhydrol.2023.130377
    Gu, H., Xu, Y.-P., Liu, L., Xie, J., Wang, L., Pan, S., & Guo, Y. (2023). Seasonal catchment memory of high mountain rivers in the Tibetan Plateau. Nature communications, 14(1), 3173.
    Güntner, A., Stuck, J., Werth, S., Döll, P., Verzano, K., & Merz, B. (2007). A global analysis of temporal and spatial variations in continental water storage. Water Resources Research, 43(5).
    Gustard, A., Bullock, A., & Dixon, J. (1992). Low flow estimation in the United Kingdom. Institute of Hydrology.
    Hadizadeh, R., Eslamian, S., & Chinipardaz, R. (2013). Investigation of long-memory properties in streamflow time series in Gamasiab River, Iran. International Journal of Hydrology Science and Technology, 3(4), 319-350.
    Hagemann, S., & Stacke, T. (2015). Impact of the soil hydrology scheme on simulated soil moisture memory. Climate Dynamics, 44, 1731-1750.
    Haines, W. B. (1925). Studies in the physical properties of soils: II. A note on the cohesion developed by capillary forces in an ideal soil1. The Journal of Agricultural Science, 15(4), 529-535.
    Haines, W. B. (1930). Studies in the physical properties of soil. V. The hysteresis effect in capillary properties, and the modes of moisture distribution associated therewith. The Journal of Agricultural Science, 20(1), 97-116.
    Hall, F. R. (1968). Base‐flow recessions—A review. Water resources research, 4(5), 973-983.
    Hashemi, R., Brigode, P., Garambois, P.-A., & Javelle, P. (2022). How can we benefit from regime information to make more effective use of long short-term memory (LSTM) runoff models? Hydrology and Earth System Sciences, 26(22), 5793-5816.
    Heidbüchel, I., Troch, P. A., Lyon, S. W., & Weiler, M. (2012). The master transit time distribution of variable flow systems. Water Resources Research, 48(6).
    Hirsch, R. M., Slack, J. R., & Smith, R. A. (1982). Techniques of trend analysis for monthly water quality data. Water resources research, 18(1), 107-121.
    Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735-1780.
    Hsu, Y.-J., Fu, Y., Bürgmann, R., Hsu, S.-Y., Lin, C.-C., Tang, C.-H., & Wu, Y.-M. (2020). Assessing seasonal and interannual water storage variations in Taiwan using geodetic and hydrological data. Earth and Planetary Science Letters, 550, 116532. https://doi.org/https://doi.org/10.1016/j.epsl.2020.116532
    Huang, C.-C., & Yeh, H.-F. (2022). Evaluation of seasonal catchment dynamic storage components using an analytical streamflow duration curve model. Sustainable Environment Research, 32(1), 49.
    Hung, W. C., Hwang, C., Sneed, M., Chen, Y. A., Chu, C. H., & Lin, S. H. (2021). Measuring and interpreting multilayer aquifer‐system compactions for a sustainable groundwater‐system development. Water Resources Research, 57(4), e2020WR028194.
    Hurst, H. E. (1951). Long-term storage capacity of reservoirs. Transactions of the American society of civil engineers, 116(1), 770-799.
    Hurst, H. E. (1956). Methods of using long-term storage in reservoirs. Proceedings of the institution of civil engineers, 5(5), 519-543.
    Hwang, H.-T., Lee, E., Berg, S. J., Sudicky, E. A., Kim, Y., Park, D., Lee, H., & Park, C. (2021). Estimating anthropogenic effects on a highly-controlled basin with an integrated surface-subsurface model. Journal of Hydrology, 603, 126963.
    Ibrahim, A., Wayayok, A., Shafri, H. Z. M., & Toridi, N. M. (2024). Remote sensing technologies for modelling groundwater storage dynamics: Comprehensive review. Journal of Hydrology X, 100175.
    Kantelhardt, J. W., Zschiegner, S. A., Koscielny-Bunde, E., Havlin, S., Bunde, A., & Stanley, H. E. (2002). Multifractal detrended fluctuation analysis of nonstationary time series. Physica A: Statistical Mechanics and its Applications, 316(1-4), 87-114.
    Kendall, M. G. (1948). Rank correlation methods.
    Kerkhoven, E., & Gan, T. Y. (2011). Unconditional uncertainties of historical and simulated river flows subjected to climate change. Journal of Hydrology, 396(1-2), 113-127.
    Klemeš, V. (1974). The Hurst phenomenon: A puzzle? Water Resources Research, 10(4), 675-688.
    Koutsoyiannis, D. (2002). The Hurst phenomenon and fractional Gaussian noise made easy. Hydrological Sciences Journal, 47(4), 573-595.
    Koutsoyiannis, D. (2005). Hydrologic persistence and the Hurst phenomenon. Water encyclopedia, 3, 210-221.
    Kuang, X., Liu, J., Scanlon, B. R., Jiao, J. J., Jasechko, S., Lancia, M., Biskaborn, B. K., Wada, Y., Li, H., & Zeng, Z. (2024). The changing nature of groundwater in the global water cycle. Science, 383(6686), eadf0630.
    Lee, H., Calvin, K., Dasgupta, D., Krinner, G., Mukherji, A., Thorne, P., Trisos, C., Romero, J., Aldunce, P., & Barret, K. (2023). IPCC, 2023: Climate Change 2023: Synthesis Report, Summary for Policymakers. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, Switzerland.
    Li, E., Mu, X., Zhao, G., & Gao, P. (2015). Multifractal detrended fluctuation analysis of streamflow in the Yellow River Basin, China. Water, 7(4), 1670-1686.
    Li, L. (2019). Watershed Reactive Transport. Reviews in Mineralogy and Geochemistry, 85(1), 381-418. https://doi.org/10.2138/rmg.2018.85.13
    Lone, M. A., Yamoah, K. A., & Lin, T.-W. (2024). Chapter 10 - A brief review of climate in Taiwan. In N. Khare (Ed.), The Role of Tropics in Climate Change (pp. 187-192). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-323-99519-1.00007-7
    Lovejoy, S., & Schertzer, D. (1986). Scale invariance, symmetries, fractals, and stochastic simulations of atmospheric phenomena. Bulletin of the American meteorological society, 67(1), 21-32.
    Mandelbrot, B. (1967). How long is the coast of Britain? Statistical self-similarity and fractional dimension. Science, 156(3775), 636-638.
    Mandelbrot, B. B. (1983). The fractal geometry of nature/Revised and enlarged edition. New York Magazine.
    Mandelbrot, B. B., & Mandelbrot, B. B. (1982). The fractal geometry of nature (Vol. 1). WH freeman New York.
    Mandelbrot, B. B., & Mandelbrot, B. B. (1999). Intermittent turbulence in self-similar cascades: divergence of high moments and dimension of the carrier. Multifractals and 1/ƒ Noise: Wild Self-Affinity in Physics (1963–1976), 317-357.
    Mandelbrot, B. B., & Van Ness, J. W. (1968). Fractional Brownian motions, fractional noises and applications. SIAM Review, 10(4), 422-437.
    Mann, H. B. (1945). Nonparametric tests against trend. Econometrica: Journal of the econometric society, 245-259.
    Martinez, G. F., & Gupta, H. V. (2010). Toward improved identification of hydrological models: A diagnostic evaluation of the “abcd” monthly water balance model for the conterminous United States. Water Resources Research, 46(8).
    Meles, M. B., Bradford, S., Casillas-Trasvina, A., Chen, L., Osterman, G., Hatch, T., Ajami, H., Crompton, O., Levers, L., & Kisekka, I. (2024). Uncovering the gaps in managed aquifer recharge for sustainable groundwater management: A focus on hillslopes and mountains. Journal of Hydrology, 131615.
    Menna, B. Y., & Waktola, D. K. (2022). Extreme temperature trend and return period mapping in a changing climate in Upper Tekeze river basin, Northern Ethiopia. Physics and Chemistry of the Earth, Parts A/B/C, 128, 103234.
    Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., & Veith, T. L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50(3), 885-900.
    Moussu, F., Oudin, L., Plagnes, V., Mangin, A., & Bendjoudi, H. (2011). A multi-objective calibration framework for rainfall–discharge models applied to karst systems. Journal of Hydrology, 400(3-4), 364-376.
    Muzy, J.-F., Bacry, E., & Arneodo, A. (1993). Multifractal formalism for fractal signals: The structure-function approach versus the wavelet-transform modulus-maxima method. Physical review E, 47(2), 875.
    Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part I—A discussion of principles. Journal of Hydrology, 10(3), 282-290.
    Ni, L., Wang, D., Singh, V. P., Wu, J., Wang, Y., Tao, Y., & Zhang, J. (2020). Streamflow and rainfall forecasting by two long short-term memory-based models. Journal of Hydrology, 583, 124296. https://doi.org/https://doi.org/10.1016/j.jhydrol.2019.124296
    Nogueira Filho, F. J. M., Souza Filho, F. d. A., Porto, V. C., Vieira Rocha, R., Sousa Estácio, Á. B., & Martins, E. S. P. R. (2022). Deep Learning for Streamflow Regionalization for Ungauged Basins: Application of Long-Short-Term-Memory Cells in Semiarid Regions. Water, 14(9), 1318. https://www.mdpi.com/2073-4441/14/9/1318
    O’Connell, E., O’Donnell, G., & Koutsoyiannis, D. (2023). On the spatial scale dependence of long‐term persistence in global annual precipitation data and the Hurst Phenomenon. Water Resources Research, 59(4), e2022WR033133.
    O’Connell, P., Koutsoyiannis, D., Lins, H., Markonis, Y., Montanari, A., & Cohn, T. (2016). The scientific legacy of harold edwin hurst (1880–1978). Hydrological Sciences Journal, 61(9), 1571-1590.
    Oleson, K. W., Lawrence, D. M., Bonan, G. B., Drewniak, B., Huang, M., Koven, C. D., Levis, S., Li, F., Riley, W. J., & Subin, Z. M. (2010). Technical description of version 4.0 of the Community Land Model (CLM). NCAR Tech. Note NCAR/TN-478+ STR, 257, 1-257.
    Orth, R., & Seneviratne, S. I. (2012). Analysis of soil moisture memory from observations in Europe. Journal of Geophysical Research: Atmospheres, 117(D15).
    Orth, R., & Seneviratne, S. I. (2013). Propagation of soil moisture memory to streamflow and evapotranspiration in Europe. Hydrology and Earth System Sciences, 17(10), 3895-3911.
    Pandey, G., Lovejoy, S., & Schertzer, D. (1998). Multifractal analysis of daily river flows including extremes for basins of five to two million square kilometres, one day to 75 years. Journal of Hydrology, 208(1-2), 62-81.
    Peng, C.-K., Buldyrev, S. V., Havlin, S., Simons, M., Stanley, H. E., & Goldberger, A. L. (1994). Mosaic organization of DNA nucleotides. Physical review e, 49(2), 1685.
    Peters, E., Bier, G., van Lanen, H. A. J., & Torfs, P. J. J. F. (2006). Propagation and spatial distribution of drought in a groundwater catchment. Journal of Hydrology, 321(1), 257-275. https://doi.org/https://doi.org/10.1016/j.jhydrol.2005.08.004
    Peterson, T. J., Saft, M., Peel, M., & John, A. (2021). Watersheds may not recover from drought. Science, 372(6543), 745-749.
    Prokešová, R., Horáčková, Š., & Snopková, Z. (2022). Surface runoff response to long-term land use changes: Spatial rearrangement of runoff-generating areas reveals a shift in flash flood drivers. Science of the Total Environment, 815, 151591.
    Richards, L. A. (1931). Capillary conduction of liquids through porous mediums. ArXiv Physics e-prints, 1(5), 318-333.
    Roberts, M. E., Kim, D., Lu, J., & Hamilton, D. P. (2023). HARP: A suite of parameters to describe the hysteresis of streamflow and water quality constituents. Journal of Hydrology, 626, 130262. https://doi.org/https://doi.org/10.1016/j.jhydrol.2023.130262
    Rodríguez‐Iturbe, I., & Valdés, J. B. (1979). The geomorphologic structure of hydrologic response. Water resources research, 15(6), 1409-1420.
    Sabzipour, B., Arsenault, R., Troin, M., Martel, J.-L., Brissette, F., Brunet, F., & Mai, J. (2023). Comparing a long short-term memory (LSTM) neural network with a physically-based hydrological model for streamflow forecasting over a Canadian catchment. Journal of Hydrology, 627, 130380. https://doi.org/https://doi.org/10.1016/j.jhydrol.2023.130380
    Sankaran, A., Krzyszczak, J., Baranowski, P., Devarajan Sindhu, A., Kumar, N. P., Lija Jayaprakash, N., Thankamani, V., & Ali, M. (2020). Multifractal cross correlation analysis of agro-meteorological datasets (including reference evapotranspiration) of California, United States. Atmosphere, 11(10), 1116.
    Sankarasubramanian, A., Vogel, R. M., & Limbrunner, J. F. (2001). Climate elasticity of streamflow in the United States. Water Resources Research, 37(6), 1771-1781.
    Sapač, K., Vidmar, A., Bezak, N., & Rusjan, S. (2020). Lag times as indicators of hydrological mechanisms responsible for NO3-N flushing in a forested headwater catchment. Water, 12(4), 1092.
    Sathyanadh, A., Karipot, A., Ranalkar, M., & Prabhakaran, T. (2016). Evaluation of soil moisture data products over Indian region and analysis of spatio-temporal characteristics with respect to monsoon rainfall. Journal of Hydrology, 542, 47-62.
    Schaake, J., & Liu, C. (1989). Development and application of simple water balance models to understand the relationship between climate and water resources.
    Schmitt, F. G., & Huang, Y. (2016). Stochastic analysis of scaling time series: from turbulence theory to applications. Cambridge University Press.
    Scott, R., Entekhabi, D., Koster, R., & Suarez, M. (1997). Timescales of land surface evapotranspiration response. Journal of climate, 10(4), 559-566.
    Seo, K.-W., Ryu, D., Jeon, T., Youm, K., Kim, J.-S., Oh, E. H., Chen, J., Famiglietti, J. S., & Wilson, C. R. (2025). Abrupt sea level rise and Earth’s gradual pole shift reveal permanent hydrological regime changes in the 21st century. Science, 387(6741), 1408-1413.
    Seymenov, K. (2019). Climate elasticity of annual streamflow in Northwest Bulgaria. In Smart Geography: 100 Years of the Bulgarian Geographical Society (pp. 105-115). Springer.
    Shrestha, P., Samaniego, L., Rakovec, O., Kumar, R., Mi, C., Rinke, K., & Thober, S. (2024). Toward improved simulations of disruptive reservoirs in global hydrological modeling. Water Resources Research, 60(4), e2023WR035433.
    Sidle, R. C., & Gomi, T. (2024). Chapter 5 - Hydrological Systems. In I. D. Jones & J. P. Smol (Eds.), Wetzel's Limnology (Fourth Edition) (pp. 57-73). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-822701-5.00005-7
    Singh, V. P., Singh, R., Paul, P. K., Bisht, D. S., & Gaur, S. (2024). Time series analysis. In Hydrological Processes Modelling and Data Analysis: A Primer (pp. 35-71). Springer.
    Tél, T., Fülöp, Á., & Vicsek, T. (1989). Determination of fractal dimensions for geometrical multifractals. Physica A: Statistical Mechanics and its Applications, 159(2), 155-166.
    Tessier, Y., Lovejoy, S., Hubert, P., Schertzer, D., & Pecknold, S. (1996). Multifractal analysis and modeling of rainfall and river flows and scaling, causal transfer functions. Journal of Geophysical Research: Atmospheres, 101(D21), 26427-26440.
    Tetzlaff, D., Soulsby, C., Hrachowitz, M., & Speed, M. (2011). Relative influence of upland and lowland headwaters on the isotope hydrology and transit times of larger catchments. Journal of Hydrology, 400(3), 438-447. https://doi.org/https://doi.org/10.1016/j.jhydrol.2011.01.053
    Thomas Jr, H. A. (1981). Improved methods for national water assessment, water resources contract: WR15249270.
    Tripathi, M., Yadav, P., Chahar, B., & Dietrich, P. (2021). A review on groundwater–surface water interaction highlighting the significance of streambed and aquifer properties on the exchanging flux. Environmental Earth Sciences, 80(17), 604.
    Trotter, L., Saft, M., Peel, M. C., & Fowler, K. J. (2024). Recession constants are non-stationary: Impacts of multi-annual drought on catchment recession behaviour and storage dynamics. Journal of Hydrology, 630, 130707.
    Tsao, J., Lee, C.-H., & Yeh, H.-F. (2020). Attribution of Streamflow Variations in Southern Taiwan. Water, 12(9), 2465.
    Tung, Y.-S., Wang, C.-Y., Weng, S.-P., & Yang, C.-D. (2022). Extreme index trends of daily gridded rainfall dataset (1960–2017) in Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 33(1), 8.
    Ukarande, S. K. (2023). Hydrology. In S. K. Ukarande (Ed.), Irrigation Engineering and Hydraulic Structures (pp. 26-68). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-33552-5_3
    Vo, T.-H., & Liou, Y.-A. (2024). Four-decade spring droughts in Taiwan. Journal of Hydrology: Regional Studies, 54, 101849.
    Walia, S. S., Kaur, K., & Kaur, T. (2024). Factors Affecting Watershed Management and Impact of Watershed Management Program on Sustainable Agriculture. In S. S. Walia, K. Kaur, & T. Kaur (Eds.), Rainfed Agriculture and Watershed Management (pp. 81-90). Springer Nature Singapore. https://doi.org/10.1007/978-981-99-8425-1_10
    Wang, C.-C., Chuang, P.-Y., & Tsuboki, K. (2025). Where and why do Mei-yu season Heavy-rainfall quantitative precipitation forecasts in Taiwan improve the most using a higher model resolution. Natural Hazards, 121(1), 383-403.
    Wang, C.-C., Tseng, L.-S., Huang, C.-C., Chuang, P.-Y., Su, N.-C., Chen, C.-T., Lo, S.-H., & Tsuboki, K. (2024). Effects of long-term climate change on typhoon rainfall associated with southwesterly monsoon flow near Taiwan: Mindulle (2004) and Morakot (2009). In: Springer.
    Xiao, D., Shi, Y., Brantley, S. L., Forsythe, B., DiBiase, R., Davis, K., & Li, L. (2019). Streamflow generation from catchments of contrasting lithologies: The role of soil properties, topography, and catchment size. Water Resources Research, 55(11), 9234-9257.
    Yan, B., Gu, Y., Li, E., Xu, Y., & Ni, L. (2024). Runoff Prediction of Tunxi Basin under Projected Climate Changes Based on Lumped Hydrological Models with Various Model Parameter Optimization Strategies. Sustainability, 16(16), 6897.
    Yang, Y., McVicar, T. R., Donohue, R. J., Zhang, Y., Roderick, M. L., Chiew, F. H., Zhang, L., & Zhang, J. (2017). Lags in hydrologic recovery following an extreme drought: Assessing the roles of climate and catchment characteristics. Water Resources Research, 53(6), 4821-4837.
    Yeh, H.-F., & Chen, H.-Y. (2022). Assessing the long-term hydrologic responses of river catchments in Taiwan using a multiple-component hydrograph approach. Journal of Hydrology, 610, 127916. https://doi.org/https://doi.org/10.1016/j.jhydrol.2022.127916
    Yu, J.-C., Chiang, P.-N., Lai, Y.-J., Tsai, M.-J., & Wang, Y.-N. (2021). High rainfall inhibited soil respiration in an Asian monsoon forest in Taiwan. Forests, 12(2), 239.
    Yuan, X., & Zhu, E. (2018). A first look at decadal hydrological predictability by land surface ensemble simulations. Geophysical Research Letters, 45(5), 2362-2369.
    Zambrano-Bigiarini, M., & Rojas, R. (2013). A model-independent Particle Swarm Optimisation software for model calibration. Environmental Modelling & Software, 43, 5-25. https://doi.org/https://doi.org/10.1016/j.envsoft.2013.01.004
    Zanin, P. R., Pareja-Quispe, D., & Espinoza, J.-C. (2024). Evapotranspiration in the Amazon basin: Couplings, hydrological memory and water feedback. Agricultural and Forest Meteorology, 352, 110040.
    Zhan, C., Liang, C., Zhao, L., Zhang, Y., Cheng, L., Jiang, S., & Xing, L. (2021). Multifractal characteristics analysis of daily reference evapotranspiration in different climate zones of China. Physica A: Statistical Mechanics and its Applications, 583, 126273.
    Zhang, J., Chen, H., Fu, Z., Luo, Z., Wang, F., & Wang, K. (2022). Effect of soil thickness on rainfall infiltration and runoff generation from karst hillslopes during rainstorms. European Journal of Soil Science, 73(4), e13288.
    Zhang, J., Zhang, X., Li, R., Chen, L., & Lin, P. (2017). Did streamflow or suspended sediment concentration changes reduce sediment load in the middle reaches of the Yellow River? Journal of Hydrology, 546, 357-369.
    Zhang, L., Li, H., Liu, D., Fu, Q., Li, M., Faiz, M. A., Ali, S., Khan, M. I., & Li, T. (2021). Application of an improved multifractal detrended fluctuation analysis approach for estimation of the complexity of daily precipitation. International Journal of Climatology, 41(9), 4653-4671.
    Zuecco, G., Penna, D., Borga, M., & van Meerveld, H. J. (2016). A versatile index to characterize hysteresis between hydrological variables at the runoff event timescale. Hydrological Processes, 30(9), 1449-1466.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE