簡易檢索 / 詳目顯示

研究生: 王文扞
Wang, Wen-Han
論文名稱: 溫度對霰石穩定同位素與微量元素分佈的影響:無機沉澱實驗
Temperature Effect on Stable Isotope Fractionation and Trace Element Partition in Aragonite:Inorganic Precipitation Experiments
指導教授: 游鎮烽
You, Chen-Feng
學位類別: 碩士
Master
系所名稱: 理學院 - 地球科學系
Department of Earth Sciences
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 84
中文關鍵詞: 同位素代用指標無機沉澱分配係數碳酸鈣霰石
外文關鍵詞: isotopic ratios, aragonite, calcium carbonate, partitioning coefficient, proxy, inorganic precipitation
相關次數: 點閱:102下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 以地球化學研究古氣候環境的領域中,常利用低溫形成的碳酸鈣礦物中微量元素與鈣元素濃度的比值(trace element/Ca ratios)或者同位素比值(isotopic ratios)當作研究古環境氣候的代用指標(proxy);一般認為當碳酸鈣形成時,其內部微量元素含量或同位素比值會記錄鈣化當時周圍的水體環境狀態。近二十年來有許多代用指標被廣泛的應用在重建古氣候環境上,但是當我們使用這些代用指標時,不可忽視其中的基礎理論,因此進行無機沉澱碳酸鈣實驗,探討環境因子對碳酸鈣中微量元素分佈的影響及控制機制是具有其必要性的。
    本研究使用固定流速導入法,以流速控制生長速率狀態下,固定初始溶液pH值和溶液的化學組成,在五種不同溫度下(15 oC、20 oC、25 oC、30 oC、35oC)產生碳酸鈣霰石相的沉澱,以高精度質譜技術分析碳酸鈣與溶液中的微量元素比值、鋰及硼同位素值。實驗結果顯示鋰、硼、鎂元素的分配係數與溫度的相關性較差,且在方解石中相對富集,霰石相中鍶與鋇的濃度較方解石中富集,且鋇的分配係數結果與前人研究一致,與溫度呈現良好的負相關趨勢,鍶則缺乏與溫度的相關性。硼、鋰同位素與溫度呈現出正相關的趨勢,在本實驗設置狀態下,硼同位素的分化主控於溫度影響,而鋰同位素在不同礦物相中有不同的分化影響機制,自然界樣品的鋰同位素值與無機沉澱結果相似,顯示生物效應對鋰同位素影響並不顯著。

    Trace element contents or stable isotopic ratios in marine calcium carbonate are commonly used as proxies for reconstructing climatic conditions in the past ocean. Previous investigations have showed that the incorporation of trace elements into CaCO3 crystal can be influenced by various environmental factors but the major controlling mechanism is still unclear. Due to the potential complexity in the natural environment, we designed an inorganic precipitation experiment to study the relationships between trace elements and the potential impact factors, i.e., temperature, growth rate and pH.
    Precipitation experiments with constant pH and growth rate at five different temperatures (15 oC, 20 oC, 25 oC, 30 oC, and 35 oC) were conducted and concentrations of Li, B, Mg, Sr and Ba in solutions and carbonate precipitates were both analyzed by Sector Field Inductively Coupled Plasma Mass Spectrometry (SF-ICP-MS). The isotopic ratios of Li and B were analyzed by Multi Collector Inductively Coupled plasma Mass Spectrometry (MC-ICP-MS). The results reveal that partitioning coefficients of Li, B and Mg have weak correlations with temperature, and are enriched in calcite. In contrast, Sr and Ba are enriched in aragonite. The partitioning coefficient of Ba shows a negative relationship with temperature, whereas Sr displays a minor temperature effect. B isotopic ratios are mainly controlled by temperature. On the other hand, Li isotopes fractionated differently in calcite and aragonite. The consistent results observed in the experimental specimens and the natural samples imply minor vital effect on Li isotopes in carbonate.

    摘要 I Abstract II 誌謝 III 章節目錄 IV 表目錄 VII 圖目錄 VIII 第一章 前言 1 1.1 研究背景 1 1.2 研究目的 1 1.3 前人研究 2 1.3.1 鋰 (Lithium) 2 1.3.2 硼 (Boron) 3 1.3.3 鎂 (Magnesium) 4 1.3.4 鍶 (Strontium) 5 1.3.5 鋇 (Barium) 5 1.3.6 鋰同位素 (δ7Li) 5 1.3.7 硼同位素 (δ11B) 6 1.3.8 無機沉澱實驗方法 8 第二章 理論 10 2.1 沉澱原理 10 2.2 碳酸鈣 10 2.3 同位素的分化 11 2.4 微量元素分佈 12 2.5 溫度與化學組成對礦物相的影響 13 第三章 實驗方法 15 3.1 實驗設置 15 3.2 無機沉澱實驗狀態控制 17 3.2.1 溫度 18 3.2.2 生長速率 18 3.2.3 pH值與水體分壓效應 19 3.2.4 鹽度 20 3.2.5 溶液化學組成 20 3.2.6 溶液混合 21 3.3 清洗與取樣 21 3.4 礦物相鑑定與化學分析 22 3.4.1 X光粉末繞射儀 22 3.4.2 掃描式電子顯微鏡 22 3.4.3 高解析感應耦合電漿質譜儀(HR-ICP-MS) 23 3.4.4 同位素測量 24 3.4.4.1 鋰同位素的測量 26 3.4.4.2 硼同位素的測量 28 第四章 結果與討論 29 4.1 X光粉末繞射分析結果 29 4.2 掃描式電子顯微鏡分析結果 32 4.3 生長速率變異實驗中穩定同位素與微量元素分佈探討 36 4.4 沉澱母溶液組成變異 37 4.5 碳酸鈣中微量元素與溫度關係 39 4.5.1 鋰分配係數 41 4.5.2 硼分配係數 44 4.5.3 鎂分配係數 48 4.5.4 鍶分配係數 53 4.5.5 鋇分配係數 57 4.5.6 DTE實驗結果與理論計算結果比較 59 4.6 硼同位素 61 4.6.1 沉澱水體pH值對霰石中硼同位素的影響 61 4.6.2 沉澱水體溫度對霰石中硼同位素的影響 66 4.7 鋰同位素 70 第五章 結論 74 第六章 參考文獻 76 附錄一、無機沉澱各溫度實驗之元素分配係數。 82 附錄二、比較前人研究與本實驗之微量元素分配係數溫度方程式。 82 附錄三、無機沉澱各溫度實驗之硼同位素測量值與標準化到海水的數值。 83 附錄四、無機沉澱各溫度實驗之硼同位素值與修正溫度效應後的數值比較。 84 附錄五、無機沉澱各溫度實驗之鋰同位素測量值,以及標準化的數值。 84 附錄六、各沉澱母液之鋰同位素值。 84

    中文部分:
    張英俊、程星、祝安,石灰華沉積機制的實驗研究[J ]. 中國岩溶, 13 (3),197- 205頁,1994。
    曹英霞、楊堅、李杰,阻垢劑HEDP和PBTC阻垢機理探討,同濟大學學報,32(4),556-560頁,2004。
    王博賢,珊瑚骨骼硼同位素記錄與其環境意義,國立成功大學地球科學所碩士論文,第5-77 頁,2005。
    林柏宇,利用無機沈澱溫控實驗探討碳酸鈣中穩定同位素及微量元素的分佈特性,國立功大學地球科學所碩士論文,99頁,2006。
    肖應凱、李世珍、魏海珍、孫愛德、周衛建、劉衛國,從海/咸水中沉積碳酸鈣時異常的硼同位素分餾,中國科學B輯化學, 36 (3),263~272頁,2006。

    英文部分:
    Anders E. and Grevesse N., Abundances of the elements: Meteoritic and solar Geochimica et Cosmochimica Acta, 53, 197-214, 1989
    Alibert C., Kinsley L., Fallon S. J., Mcculloch M. T., Berkelmans R. and Mcallister F., Source of trace element variability in Great Barrier Reef corals affected by the Burdekin flood plumes. Geochimica et Cosmochimica Acta, 67, 231-246, 2003
    Busenberg E., Plummer L. N., and Parker V. B., The solubility of strontianite (SrCO3) in CO2-H2O solutions between 2 and 91 oC, the association constants of SrHCO3+(aq) and SrCO3o(aq) between 5 and 80 oC, and an evaluation of the thermodynamic properties of Sr2+(aq) and SrCO3(cr) at 25 oC and 1 atm total pressure. Geochimica et Cosmochimica Acta, 48, 2021-2035, 1984
    Burton E. A. and Walter L. M., Relative precipitation rates of aragonite and Mg calcite from seawater: temperature or carbonate ion control? Geology, 15, 111-114, 1987
    Chan L. H., Lithium isotope analysis by thermal ionization mass spectrometry of lithium tetraborate. Anal. Chem., 59, 2662-2665, 1987
    Chan L. H., Edmond J. M., and Thompson G., A lithium isotope study of hot springs and metabasalts from mid-ocean ridge hydrothermal systems. Journal of Geophysical Research, 98, 9653-9659, 1993
    Chang V. T. C., Willicms R. J. P., Makishima A., Belshawl N. S., and O’Nions R. K., Mg and Ca isotope fractionation during CaCO3 biomineralisation. Biochemical and Biophysical Research Communication, 323, 79-85, 2004
    Cruz Jr. F. W., Burns S. J., Jercinovic M., Karmann I., Sharp W. D. and Vuille M., Evidence of rainfall variations in Southern Brazil from trace element ratios (Mg/Ca and Sr/Ca) in a Late Pleistocene stalagmite. Geochimica et Cosmochimica Acta, 71, 2250-2263, 2007
    Delaney M. L., Be A. W. H., and Boyle E. A., Li, Sr, Mg and Na in foraminiferal calcite shells from laboratory culture, sediment traps, and sediment cores, Geochim. Cosmochim. Acta, 49, 1327-1341, 1985
    Delaney M. L., and Boyle E. A., Lithium in foraminiferal shells: implications for high-temperature hydrothermal circulation fluxes and oceanic crustal generation rates. Earth and Planetary Science Letters, 20, 91-105, 1986
    Dean J. A., Lange’s Handbook of Chemistry, Fourteenth edition, McGraw-Hill, New York, 1992
    Dietzel M., Gussone N., and Eisenhauer A., Co-precipitation of Sr2+ and Ba2+ with aragonite by membrane diffusion of CO2 between 10 and 50 oC. Ghemical Geology, 203, 139-151, 2004
    Fallon S. J., McCulloch M. T., Woesik R. V., and Sinclair D. J., Corals at their latitudinal limits: laser ablation trace element systematics in Porites from Shirigai Bay, Japan. Earth and Planetary Science Letters, 172, 221-238, 1999
    Gabitov R. I. and Watson E. B., Partitioning of strontium between calcite and fluid. Geochemistry Geophysics Geosystems, 7, Q11004, doi:10.1029/2005GC001216, 2006
    Gaetani G. A. and Cohen A. L., Element partitioning during precipitation of aragonite from seawater: A framework for understanding paleoproxies. Geochimica et Cosmochimica Acta, 70, 4617-4634, 2006
    Hemming N. G. and Hanson G. N., Boron isotopic composition and concentration in modern marine carbonate. Geochim. Cosmochim. Acta, 56, 537-543, 1992
    Hemming N. G., Reeder R. J., and Hanson G. N., Mineral-fluid partitioning and isotopic fractionation of boron in synthetic calcium carbonate. Geochimica et Cosmochimica Acta, 59, 371-379, 1995
    Hart S. R. and Cohen A. L., An ion probe study of annual cycles of Sr/Ca and other trace elements in corals, Geochim. Cosmochim. Acta, 60, 3075-3084, 1996
    Henderson G. H., New oceanic proxies for paleoclimate. Earth and Planetary Science Letters, 203, 1-13, 2002
    Hönisch B., Bijma J., Russell A. D., Spero H. J., Palmer M. R., Zeebe R. E. and Eisenhauer A., The influence of symbiont photosynthesis on the boron isotopic composition of foraminifera shells. Marine Micropaleontology, 49, 87-96, 2003
    Hönisch B., Hemming N. G., Grottoli A. G., Amat A., Hanson G. N., and Buma J., Assessing scleractinian corals as recorders for paleo-pH: Empirical calibrations and vital effects. Geochim. Cosmochim. Acta, 68, 3675-3685, 2004
    Hall J. M. and Chan L. H., Li/Ca in multiple species of benthic and planktonic foraminifera: thermocline, latitudinal, and glacial-interglacial variation. Geochimica et Cosmochimica Acta, 68, 529-545, 2004
    Hall J. M., Chan L. H., McDonough W. F. and Turekian K. K., Determination of the lithium isotopic composition of planktic foraminifera and its application as a paleo-seawater proxy. Marine Geology, 217, 255-265, 2005
    Heinemann F., Treccani L. and Fritz M., Abalone nacre insoluble matrix induces growth of flat and oriented aragonite crystals. Biochemical and Biophysical Research Communications, 344, 45-49, 2006
    IUPAC Isotopic compositions of the elements 1997., Pure Appl. Chem. 70, 217-235, 1998
    Johnson K. R., Hu C., Belshaw N. S. and Henderson G. M., Seasonal trace-element and stable-isotope variations in a Chinese speleothem: The potential for high-resolution paleomonsoon reconstruction. Earth and Planetary Science Letters, 244, 394–407, 2006
    Katz A., The interaction of magnesium with calcite during crystal growth at 25-90 oC and one atmosphere. Geochimica et Cosmochimica Acta, 37, 1563-1586, 1973
    Kakihana H., Kotaka M., Satoh S., Nomura M., and Okamoto M., Fundamental studies on the ion-exchange separation of boron isotopes. Bull Chem. Soc. Jap., 50, 158-163, 1977
    Kinsman D. J. J. and Holland H. D., The co-precipitation of cations with CaCO3? Ⅳ. The co-precipitation of Sr2+ with aragonite between 16 and 96 oC. Geochim. Cosmochim. Acta, 33, 1-17, 1969
    Klein C., Hurlbut C. S., Manual of Mineralogy 21st ed., 2000
    Klochko K., Kaufman A. J., Yao W., Byrne R. H. and Tossell J. A., Experimental measurement of boron isotope fractionation in seawater. Earth and Planetary Science Letters, 248, 276-285, 2006
    Lorens R. B., Sr, Cd, Mn and Co distribution coefficients in calcite as a function of calcite precipitation rate. Geochimica et Cosmochimica Acta, 45, 553-561, 1981
    Lea D. W., Shen G. T., and Boyle E. A., Coralline barium records temporal variability in equatorial Pacific upwelling. Nature, 340, 373-376, 1989
    Lea D. W. and Spero H. J., Assessing the reliability of paleochemical tracers: Barium uptake in the shells of planktonic foraminifera. Paleoceanography, 9, 445-452, 1994
    Lea D. W., Trace elements in foraminiferal calcite, 1n: B. K. Sen Gupta (Ed.), Modern Foraminifera, Kluwer Academic Publishing, Dordrecht, 259-277, 1999
    Lea D. W., Mashiotta T. A., and Spero H. J., Controls on magnesium and strontium uptake in planktonic foraminifera determined by live culturing. Geochimica et Cosmochimica Acta, 63, 2369-2379, 1999
    Liu Y. and Tossell A., Ab initio molecular orbital calculations for boron isotope fractionations on boric acids and borates. Geochimica et Cosmochimica Acta, 69, 3995-4006, 2005
    Marland G., Stability of calcium carbonate hexahydrate (ikaite). Geochimica et Cosmochimica Acta, 39, 83-91, 1975
    Mucci A. and Morse J. W., The incorporation of Mg2+ and Sr2+ into calcite overgrowths: influence of growth rate and solution composition. Geochim. Cosmochim. Acta, 47, 217-233, 1983
    Mucci A., Influence of temperature on the composition of magnesian calcite overgrowths precipitated from seawater. Geochim. Cosmochim. Acta, 51, 1977-1984, 1987
    Morse J. W. and Berner R. A., Partition coefficients in calcite: Examination of factors influencing the validity of experimental results and their application to natural systems. Chemical Geology, 82, 265-277, 1990
    Morse J. W., Wang Q. and Tsio M. Y., Influences of temperature and Mg:Ca ratio on CaCO3 precipitates from seawater. Geology, 25, 85–87, 1997
    Marriott C. S., Henderson G. M., and Crompton R., Effect of mineralogy, salinity, and temperature on Li/Ca and Li isotope composition of calcium carbonate. Chemical Geology, 212, 5-15, 2004a
    Marriott C. S., Henderson G. M., Belshaw N. S., and Tudhope A. W., Temperature dependence of δ7Li, δ44Ca and Li/Ca during growth of calcium carbonate. Earth and Planetary Science Leters, 222, 615-624, 2004b
    Magna T., Wiechert U. H. and Halliday A. N., Low-blank isotope ratio measurement of small samples of lithium using multiple-collector ICPMS. International Journal of Mass Spectrometry, 239, 67-76, 2004
    Meibom A., Cuif J. P., Houlbreque F., Mostefaoui S., Dauphin Y., Meibom K. L., Dunbar R., Compositional variations at ultra-structure length scales in coral skeleton. Geochimica et Cosmochimica Acta, 72, 1555-1569, 2008
    Nürnberg D., Bijma J., and Hemleben C., Erratum: Assessing the reliability of magnesium in foraminiferal calcite as a proxy for water mass temperatures. Geochimica et Cosmochimica Acta, 60, 2483-2484, 1996
    Nürnburg D., Bijrna J., and hemleben C., Assessing the reliability of magnesium in foraminiferal calcite as a proxy for water mass temperatures. Geochimica et Cosmochimica Acta, 60, 803-814, 1996
    Oomori T., Kaneshima H., Nakamura Y., and Kitano Y., Seasonal variation of minor elements in coral skeletons. Galaxea, 1, 77-80, 1982
    Ogino T., Suzuki T. and Sawada K., The formation and transformation mechanism of calcium carbonate in water. Geochimica et Cosmochimica Acta, 51, 2757-2767, 1987
    Olive K. A. and Schramm D. N., Astrophysical 7Li as a product of Big Bang nucleosynthesis and galactic cosmic-ray spallation. Nature, 360, 439-442, 1992
    Oi T., Calculations of reduced partition function ratios of monomeric and dimeric boric acids and borates by the ab initio molecular orbital theory. J. Nucl. Sci. Technol., 37, 166-172, 2000
    Palmer M. R., Spivack A. J. and Edmond J. M., Temperature and pH controls over isotopic fractionation during adsorption of boron on marine clay. Geochem. Cosmochem. Acta, 51, 2319-2323, 1987
    Parker S. C., Titiloye J. O. and Watson G. W., Molecular modeling of carbonate minerals-studies of growth and morphology. Philos. Trans. R. Soc. London, Ser. A344, 37-48, 1993
    Qi H. P., Taylor P. D. P., Berglund M. and De Bièvre P., Calibrated measurements of the isotopic composition and atomic weight of the natural Li isotopic reference material IRMM-016. International Journal of Mass Spectrometry and Ion Processes, 171, 263-268, 1997
    Rosenthal Y. and Boyle E. A., Factors controlling the fluoride content of planktonic foraminifera: An evaluation of its paleoceanographic applicability. Geochimica et Cosmochimica Acta, 57, 335-346, 1993
    Rosenthal Y., Boyle E. A., and Slowey N., Temperature control on the incorporation of magnesium, strontium, fluorine, and cadmium into benthic foraminiferal shells from Little Bahama Bank: Prospects for thermocline paleoceanography. Geochim. Cosmochim. Acta, 61, 3633-3643, 1997
    Reuer M. K., Boyle E. A., and Cole J. E., A mid-twentieth century reduction in tropical upwelling inferred from coralline trace element proxies. Earth and Planetary Science Letters, 210, 437-452, 2003
    Russell A. D., Hönisch B., Spero H. J., and Lea D. W., Effects of seawater carbonate ion concentration and temperature on shell U, Mg, and Sr in cultured planktonic foraminifera. Geochimica et Cosmochimica Acta, 68, 4347-4361, 2004
    Reynaud S., Hemming N. G., Anne J. L., and Gattuso J. P., Effect of pCO2 and temperature on the boron isotopic composition of the zooanthellate coral Acropora sp.. Coral Reefs, 23, 539-546, 2004
    Reynaud S., Ferrier-Pagès C., Meibom A., Mostefaoui S., Mortlock R., Fairbanks R., and Allemand D., Light and temperature effects on Sr/Ca and Mg/Ca ratios in the scleractinian coral Acropora sp. Geochimica et Cosmochimica Acta, 71, 354-362, 2006
    Seyfried W. E., Janecky Jr., D. R., and Mottl M. J., Alteration of the oceanic crust: Implications for geochemical cycles of lithium and boron. Geochimica et Cosmochimica Acta, 48, 557-569, 1984
    Spivack A. J. and Edmond J. M., Determination of B isotopic ratios by thermal ionization mass spectrometry of the dicesium metaborate cation. Anal. Chem., 58, 31-35, 1987
    Stumm W. and Morgan J. J., Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters 3rd. Wiley. Interscience, 1996
    Sanyal A., Hemming N. G., Broecker W. S., Lea D. W., Spero H. J. and Hanson G. N., Oceanic pH control on the boron isotopic composi-tion of foraminifera: Evidence from culture experiments. Paleo-ceanogy, 11, 513-517, 1996
    Sinclair D. J., High spatial-resolution analysis of trace elements n coral using laser ablation ICP-MS. PhD thesis, Australian National University., 1999
    Sanyal A., Nugent M., Reeder R. J. and Bijma J., Seawater pH control on the boron isotopic composition of calcite: Evidence from inorganic calcite precipitation experiments. Geochimica et Cosmochimica Acta, 64, 1551-1555, 2000
    Taylor T. I. and Urey H. C., Fractionation of the lithium and potassium isotopes by chemical exchange with zeolites. J. Chem. Phys., 6, 429-438, 1938
    Titiloye J. O., Parker S. C., and Mann S., Atomistic simulation of calcite surfaces and the influence of growth additives on their morphology. J. Cryst. Growth, 84, 533-545, 1993
    Tesoriero A. J. and Pankow J. F., Solid solution partitioning of Sr2+, Ba2+, and Cd2+ to calcite. Geochim. Cosmochim. Acta, 60, 1053-1063, 1996
    Wray J. L. and Daniels F. Precipitation of calcite and aragonite. A,. Chem. Soc. J., 79, 2031-2034, 1957
    Wansard G., De Deckker P. and Julià R., Variability in ostracod partition coefficients D(Sr) and D(Mg) Implications for lacustrine palaeoenvironmental reconstructions. Chemical Geology, 146, 39-54, 1998
    Yamaji K., Makita Y., Watanabe H., Sonoda A., Kanoh H., Hirotsu T. and Ooi K., Theoretical estimation of lithium isotopic reduced partition function ratio for lithium ions in aqueous solution. J. Phys. Chem., 105, 602-613, 2001
    Yu J., Elderfield H. and Hönisch B., B/Ca in planktonic foraminifera as a proxy for surface seawater pH. Paleoceanography, 22, PA2202, doi:10.1029/2006PA001347, 2007

    下載圖示 校內:2010-08-22公開
    校外:2010-08-22公開
    QR CODE