簡易檢索 / 詳目顯示

研究生: 劉亦浚
Liu, Yi-Jung
論文名稱: 高性能氮化鎵系發光二極體之研究
Investigation of GaN-Based Light-Emitting Diodes with Improved Performance
指導教授: 劉文超
Liu, Wen-Chau
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2011
畢業學年度: 100
語文別: 英文
論文頁數: 161
中文關鍵詞: 發光二極體氮化鎵
外文關鍵詞: light-emitting diodes, gallium nitride
相關次數: 點閱:81下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這篇論文裡,為了改善氮化鎵(GaN)發光二極體(light-emitting diodes, LEDs)結構的電流散佈(current-spreading)特性與發光強度,我們分別提出了新穎的元件製程與結構磊晶過程。此外,針對成長在不同偏角度藍寶石基板的氮化鎵發光二極體元件,我們分別對其光電特性及結構磊晶品質做一詳細探討。
    為了改善氮化鎵發光二極體結構的電流散佈效率,我們提出了一Mg-doped GaN/ intrinsic InGaN 短週期超晶格(superlattice, SL)結構。此超晶格結構係安插在p型氮化鎵與多重量子井(multiple-quantum well, MQW)間,以分散多重量子井前的電流注入密度,提升電流散佈面積。相較於傳統LED元件(簡稱元件A),此研發元件(簡稱元件B)在20 mA注入電流下,其輸出光功率(light output power)與外部量子效率(external quantum efficiency, EQE)各增加了25.4及5 %。此外,超晶格結構之應力(可能是磊晶層與基板晶格不匹配所導致)調變特性使元件B之p-GaN表層變得較為平整,金-半接面之接觸特徵阻抗降低,因此導通電壓獲得改善。相較於元件A,元件B之漏電流亦較小,這可能是因為超晶格結構提升了p-GaN的磊晶品質。
    另一種可行的方式是在MQW與p-GaN層間加入一薄的高摻雜n-GaN層,在此區域所形成的p-GaN/n-GaN內建能障(energy barrier)會使LED元件具有更好的電流橫向散佈能力。此外,電流阻塞(current crowding)效應的減少抑制了LED元件寄生電阻效應。因此,在20 mA的操作電流之下,此種新穎結構能有效降低導通電壓、串聯電阻、以及提升靜電防護能力。在60 mA操作電流的情況下持續1173小時,本研究之LED元件只有約2±0.4 %的光強度衰退現象。這項結果証實了此新穎結構確實能有效降低因電流阻塞產生熱所帶來的熱破壞。
    我們亦希望藉由改變LED元件製程以達到提升電流散佈能力之目的。吾人製作並探討一富含鎵空缺之p-GaN接觸層應用在提升氮化鎵系LED之光電特性。利用熱蒸鍍法覆蓋一層厚度約為1 nm的金在p-GaN接觸層之上,並加以高溫退火(氮氣氛圍下,400 °C,30 min.)且蝕刻,使得p-GaN表面鎵空缺增加,進而改善透明導電膜ITO(indium-tin oxide)和p-GaN的歐姆接觸性質。這是因為金與p-GaN接面的高溫處理過程會使金原子向p-GaN內層擴散。p-GaN層的鎵易與金形成金-鎵固融體,在接下來蝕刻金的過程中此固融體會被一併帶離p-GaN表面,而在p-GaN表面留下高密度的鎵空缺。在20 mA的操作電流之下,此LED結構能有效降低元件導通電壓及動態電阻,而其均勻的電流散佈面積亦將使元件輸出光功率提升約18 %。
    此外,當氮化鎵LED成長在偏角度藍寶石基板(c(0001)-軸向m(1-100)-軸偏0.2-1.0 °)時,各結構磊晶成長模式會改變。成長在0.2 °基板的氮化鎵磊晶層其成長以島狀模式(island mode)為主。隨著角度增大,磊晶層的成長模式逐漸轉為微(micro step)至巨型(macro step)階梯形狀。我們發現,不同的成長模式會影響磊晶時MQW中銦(In)成份的不均勻度,即銦-鎵相分離(phase separation)程度。基板偏的角度越大至1 °,相分離愈不明顯,但是元件的光輸出功率降低。這是因為適度的相分離,會形成局部侷限態(localized state)幫助侷限載子,提升元件之內部量子效率。此外,我們發現自然成長(naturally grown)在p-GaN層上的金字塔狀粗糙結構之密度與大小亦會受到偏角度程度的影響,進而影響到元件的抗靜電能力(electro-static discharge tolerance)。

    In this dissertation, for the purpose of enhancing current spreading characteristics as well as light emission intensity of GaN-based light-emitting diodes (LEDs), novel device fabrication processes and structure epitaxial techniques are proposed, respectively. Moreover, the optical and electrical properties and crystalline qualities of LED structures which are grown on vicinal sapphire substrates with different tilt angles are discussed in detail.
    For improving current-spreading performance of GaN-based LEDs, an Mg-doped GaN/ intrinsic InGaN short-period superlattice (SL) structure is applied. This structure is grown between p-GaN and multiple-quantum well (MQW) layers by means of spreading the current injection density prior to MQW layer, hence a more uniform current spreading becomes possible. As compared with conventional LED devices (denoted as device A), at 20 mA operation current, the studied ones (denoted as device B) exhibit improved light output power and external quantum efficiency (EQE) about 25.4 and 5 %, respectively. In addition, a smoother p-GaN surface is obtained resulted from strain modulation induced by the SL. The strain may mainly come from lattice mismatch between epitaxial layers and the sapphire substrate. An improved Ohmic contact property at metal-semiconductor interface and hence reduced turn-on voltage are found. The device B shows lower forward-/reversed- biased leakage currents than those of the device A. This may due to the better epitaxial quality of p-GaN layer with help of the SL structure.
    An another feasible way to improve current-spreading efficiency of LEDs is inserting a thin and highly-doped n-GaN between MQW and p-GaN layers. The naturally-formed p-GaN/n-GaN built-in energy barrier in this region brings about a better current spreading capability. Furthermore, reduction of the current-crowding effect reliefs parasitic resistances of LEDs. At 20 mA operation current, this novel device could effectively reduce operation voltage, parasitic series resistance, and electrostatic discharge tolerance of LEDs. The studied LED device exhibits only 2 ± 0.4 % degradation in power during 1173 hrs aging time at 60 mA operation current. This result could be attributed to the relieved thermal damage induced by current crowding.
    We also bring about an enhanced device process to improve current spreading of LEDs. One could fabricate and study a gallium-vacancy-rich p-GaN contact layer applied for GaN-based LEDs. An 1 nm Au thin film was deposited on the p-GaN layer by thermal evaporation followed by thermal-alloyed (400C for 30 min. in nitrogen ambience) and removed processes. This results in increased density of gallium vacancies on the p-GaN layer, and a better Ohmic contact property at p-GaN/ITO interface is achieved. This is because that Au atoms easily diffuse into the p-GaN layer during thermal annealing. Au-Ga solid-phase solution is formed at p-GaN/ITO interface. The followed metal removed process helps taking the solution away, and many gallium vacancies remain on the p-GaN layer. At 20 Ma operation current, reduced turn-on voltage and dynamic resistance are obtained, and improved 18 % light output power due to more uniform current spreading is achieved.
    Moreover, when GaN-based LEDs are grown on sapphire substrates with 0.2-1.0 ° tilt angles from c (0001)- toward m (1-100) planes, modes of growth of GaN epitaxial layers will be changed. Epitaxial layers gown on a 0.2 °-tilt substrate exhibit island-dominated growth mode. With increasing tilt angle, growth types are gradually changed from micro- to macro- step modes. It is found that the indium (In) composition and uniformity over whole MQW layers will be influenced by variant growth modes. In composition is more uniform while light output power of LEDs becomes degraded until the tilt angle is increased to 1 °. Generally, power is decreased when In composition becomes relatively uniform. Local regions with non-uniform In composition could be regarded as localized states to help confining free carriers, thus improved internal quantum efficiency (IQE) of LEDs is found. In addition, it is observed that the density and size of naturally-textured pyramidal-shaped structures on p-GaN layer will be influenced by tilt angle of sapphires, and the corresponding electro-static discharge (ESD) endurance of LEDs will also be altered.

    Contents Abstract (in Chinese) Abstract (in English) Table Captions Figure Captions Chapter 1 Introduction 1 1.1 Review of Gallium-Nitride (GaN)-Based Light-Emitting Diodes (LEDs) 1 1.2 Brief History of GaN-Based LEDs 3 1.3 Organization of this Dissertation 5 Chapter 2 Improved Current-Spreading Characterizations of GaN-Based LEDs by Epitaxial Technique 8 2.1 GaN LEDs with P-GaN/Undoped InGaN Superlattice Structure 9 2.1.1 Motivation 9 2.1.2 Experimental Results 12 2.1.3 A Current-Spreading Model 13 2.1.4 Material Analyses 14 2.1.5 Electrical and Optical characteristics 17 2.1.6 Summary 23 2.2 GaN LEDs with a p-GaN/n-GaN Energy Barrier Junction 23 2.2.1 Motivation 24 2.2.2 Experimental Details 26 2.2.3 Material Analyses and Schematic Energy-Band Diagram 28 2.2.4 Electrical and Optical Characteristics 29 2.2.5 Junction Temperature Analyses 34 2.2.6 ESD Measurements 35 2.2.7 Reliability 37 2.2.8 Summary 37 Chapter 3 Improved Current-Spreading Performance of GaN-Based LEDs by Au Thermal-Diffused and Removed Processes 39 3-1 Motivation 39 3-2 Experimental Details 41 3-3 Material Analyses 43 3-4 Optical and Electrical Characteristics 46 3-5 Summary 48 Chapter 4 GaN LEDs Grown on c-Toward m-Plane Misoriented Sapphire Substrates 50 4-1 Performance Investigation of GaN LEDs Grown on Mis-Oriented Sapphire Substrates 51 4.1.1 Motivation 51 4.1.2 Experimental Details 54 4.1.3 Material Quality Analyses 56 4.1.4 Turn-On Voltage versus AFM Results 58 4.1.5 Current-Voltage (I-V) Characteristics 59 4.1.6 Ideality Factors 61 4.1.7 Capacitance-Voltage (C-V) Measurements 62 4.1.8 Optical Properties 64 4.1.9 Summary 66 4-2 ESD Characteristics of GaN LEDs Grown on Mis-Oriented Sapphire Substrates 67 4.2.1 Motivation 67 4.2.2 Experimental Details 69 4.2.3 Dislocation Density Analyses 72 4.2.4 The Origin of Maximum Capacitance (Cm) and the Relation between Cm and ESD Endurance of LEDs 73 4.2.5 Surface Morphology Characterizations of LEDs 79 4.2.6 ESD Performance of LEDs 81 4.2.7 Summary 84 Chapter 5 Conclusion and Prospects 85 5.1 Conclusion 85 5.2 Prospects 88 References 91

    [1] M. S. Shur, “GaN-based devices”, Electron Devices, vol. 63, pp. 115–118, 2005.

    [2] S. D. Lester, F. A. Ponce, M.G. Craford and D. A. Steigerwald, “High dislocation densities in high efficiency GaN-based light-emitting diodes,” Appl. Phys. Lett., vol. 66, pp. 772-775, 1995.

    [3] C. L. Wang, J. R. Gong, M. F. Yeh, B. J. Wu, W. T. Liao, T. Y. Lin, and C. K. Lin, “Improvement in the Characteristics of GaN-Based Light-Emitting Diodes by inserting AlGaN-GaN short-period superlattices in GaN underlayers,” IEEE Photonics Technol. Lett., vol. 18, pp. 312-315, 2006.

    [4] R. Huang, H. Dong, D. Wang, K. Chen, H. Ding, X. Wang, W. Li, J. Xu, and Z. Ma, ”Role of barrier layers in electroluminescence from SiN-based multilayer light-emitting devices,” Appl. Phys. Lett., vol. 92, pp. 181106, 2008.

    [5] K. N. Bourdakos, D. M. N. M. Dissanayake, T. Lutz, S. R. P. Silva, and R. J. Curry ,”Highly efficient near-infrared hybrid organic-inorganic nanocrystal electroluminescence device,” Appl. Phys. Lett., vol. 92, pp. 153311, 2008.

    [6] E. H. Park, I. T. Ferguson, S. K. Jeon, J. S. Park, and T. K. Yoo, ”The effect of silicon doping in the selected barrier on the electroluminescence of InGaN/GaN multiquantum well light emitting diode,” Appl. Phys. Lett., vol. 90, pp. 031102, 2006.

    [7] C. F. Huang, C. Y. Chen, C. F. Lu, and C. C. Yang, “Reduced injection current induced blueshift in an InGaN/GaN quantum-well light-emitting diode of prestrained growth,” Appl. Phys. Lett., vol. 91, pp. 051121, 2007.

    [8] M. S. Ferdous, X. Wang, M. N. Fairchild, and S. D. Hersee, “Effect of threading defects on InGaN/GaN multiple quantum well light emitting diodes,” Appl. Phys. Lett., vol. 91, pp. 231107, 2007.

    [9] H. P. Maruska and J.J. Tietjen, “The preparation and properties of vapor-deposited single-crystal-line GaN,” Appl. Phys. Lett., vol. 15, pp. 327, 1969.

    [10] J. I. Pankov, E.A. Miller, D. Richman, J.E. Berkeyheiser, “Electroluminescence in GaN,” Journal of Luminescence, vol. 4, pp. 63-66, 1971.

    [11] H. P. Maruska, D. A. Stevenson, and J. I. Pankov, “Violet luminescence of Mg-doped GaN,” Appl. Phys. Lett., vol. 22, pp. 1003-1006, 1973.

    [12] H. Amano, M. Kito, K. Hiramatsu, and I. Akasaki, “Effect of the structure of a photoactive compound on the dissolution inhibition effect,” Jpn. J. Appl. Phys., vol. 28, pp. L2112, 1989.

    [13] S. Nakamura, M. Kito, K. Hiramatsu, and I. Akasaki, “Reducing reverse-bias current in 450°C-annealed n+p junction by hydrogen radical sintering,” Jpn. J. Appl. Phys., vol. 34, pp. L797, 1995.

    [14] H. P. Maruska. Orlando, Florida [Online]. Available: http://www.sslighting.net/lightimes/features/maruska_blue_led_history.pdf

    [15] H. M. Kim, W. C. Lee, T. W. Kang, K. S. Chung, C. S. Yoon, and C. K. Kim, "InGaN nanorods grown on (1 1 1) silicon substrate by hydride vapor phase epitaxy," Chem. Phys. Lett., vol. 380, pp. 181-184, 2003.

    [16] L. Wang, R. Li, D. li, N. Liu, L. Liu, W. Chen, C. Wang, Z. Yang, and X. Hu, "Strain modulation-enhanced Mg acceptor activation efficiency of Al 0.14 Ga 0.86 N/GaN superlattices with AlN interlayer," Appl. Phys. Lett., vol. 96, pp. 061110, 2010.

    [17] K. Streubel, N. Linder, R. Wirth, and A. Jaeger, “High brightness AlGaInP light-emitting diodes,” IEEE J. Select. Topics Quantum Electron., vol.8, pp.321-332, 2002.

    [18] M. C. Wu, C. Y. Hou, C. M. Jiang, Y. T. Wang, C. Y. Wang, H. H. Chen, and H. M. Chang, “A novel approach of LED light radiation improves the antioxidant activity of pea seedlings,” Food Chem., vol.101, pp.1753-1758, 2007.
    [19] A. Osinsky and P. E. Norris, “Efficient acceptor activation in AlGaN/GaN doped superlattices,” Mrs. Internet J. Nitride Semicond. Res., vol. 5, suppl. 1, 2000.

    [20] L. Zhou, W. Lanford, A. T. Ping, and I. Adesida, “Low resistance Ti/Pt/Au ohmic contacts to p-type GaN,” Appl. Phys. Lett., vol. 76, pp. 3451-3453, 2000.

    [21] X. Guo and E. F. Schubert, “Current crowding in GaN/InGaN light emitting diodes on insulating substrates,” J. Appl. Phys., vol. 90, pp. 4191-4195, 2001.

    [22] K. Kumakura, T. Makimoto, and N. Kobayashi, “Efficient hole generation above 10(19) cm(-3) in Mg-doped InGaN/GaN superlattices at room temperature,” Jpn. J. Appl. Phys., vol. 39, pp. L195, 2000.

    [23] J. K. Sheu, G. C. Chi, and M. J. Jou, “Low-operation voltage of InGaN/GaN light-emitting diodes by using a Mg-doped Al0.15Ga0.85N/GaN superlattice,” IEEE Electron Device Lett., vol. 22, pp. 160-162, 2001.

    [24] J. S. Jang, “High output power GaN-based light-emitting diodes using an electrically reverse-connected p-Schottky diode and p-InGaN–GaN superlattice,” Appl. Phys. Lett., vol. 93, pp. 081118, 2008.

    [25] J. S. Jang, D. Kim, and T. Y. Seong, “Low turn-on voltage and series resistance of polarization-induced InGaN–GaN LEDs by using p-InGaN/p-GaN superlattice,” IEEE Photonics Technol. Lett., vol. 18, pp. 1536-1538, 2006.

    [26] X. A. Cao, J. A. Teetsov, F. Shahedipour-Sandvik, and S. D. Arthur, “Microstructural origin of leakage current in GaN/InGaN light-emitting diodes,” J. Cryst. Growth, vol. 264, pp. 172-177, 2004.

    [27] T. Kawai, H. Yonezu, and Y. Ogasawara, “Suppression of threading dislocation generation in highly lattice mismatched heteroepitaxies by strained short-period superlattices,” Appl. Phys. Lett., vol. 63, pp. 2067-2069, 1993.

    [28] M. Nakayama, K. Kubota, and H. Kato, “Effects of buffer layers in GaAs-In0.2Al0.8As strained-layer superlattices,” Appl. Phys. Lett., vol. 48, pp. 281-283, 1986.

    [29] A. Kinoshita, J. S. Kim, and H. Hirayama, “Curent injection emission at 333 nm from AlGaN/AlGaN multi quantum well ultraviolet light emitting diodes,” Phys. Stat. Sol., vol. 180, pp. 397-402, 2000.

    [30] J. P. Liu, J. B. Limb, J. H. Ryou, W. Lee, D. Yoo, C. A. Horne, and R. D. Dupuis, “Characteristics of green light-emitting diodes using an InGaN:Mg/GaN:Mg superlattice as p-type hole injection and contact layers,” J. Electron. Mater., vol. 37, pp. 558-563, 2008.

    [31] Y. K. Su, H. C. Wang, C. L. Lin, W. B. Chen, and S. M. Chen, “AlGaInP light emitting diode with a modulation-doped superlattice,” Jpn. J. Appl. Phys., vol. 42, pp. L 751, 2003.

    [32] S. H. Jang, and C. R. Lee, “High-quality GaNSi(1 1 1) epitaxial layers grown with various AlGaNGaN superlattices as intermediate layer by MOCVD,” J. Cryst. Growth, vol. 253, pp. 64-70, 2003.

    [33] J. X. Zhang, Y. Qu , Y. Z. Chen, A. Uddin, P. Chen , and S. J. Chua, “Structural and photoluminescence study of thin GaN film grown on silicon substrate by metalorganic chemical vapor deposition,” Thin Solid Films, vol. 515, pp. 4397-4400, 2007.

    [34] B. Santic, “On the hole effective mass and the free hole statistics in wurtzite GaN,” Semicond. Sci. Technol., vol. 18, pp. 219-224, 2003.

    [35] K. Rapedius and H. J. Korsch, “Multi-barrier resonant tunnelling for the one-dimensional nonlinear Schr¨odinger Equation,” J. Phys. A: Math. Theor., vol. 42, pp. 425301, 2009.

    [36] C. H. Yen, Y. J. Liu, K. K. Yu, P. L. Lin, T. P. Chen, L. Y. Chen, T. H. Tsai, and W. C. Liu, “On an AlGaInP-based light-emitting diode with an ITO direct Ohmic contact structure,” IEEE Electron Device Lett., vol. 30, pp. 359-361, 2009.

    [37] N. C. Chen, C. M. Lin, Y. K. Yang, C. Shen, T. W. Wang, and M. C. Wu, “Measurement of junction temperature in a nitride light-emitting diode,” Jpn. J. Appl. Phys., vol. 47, pp. 8779-8782, 2008.

    [38] J. M. Shah, Y. L. Li, Th. Gessmann, and E. F. Schubert, “Experimental analysis and theoretical model for anomalously high ideality factors (n>>2.0) in AlGaN/GaN p-n junction diodes,” J. Appl. Phys., vol. 94, pp. 2627-2630, 2003.

    [39] D. Zhu, J. Xu, A. N. Noemaun, J. K. Kim, E. F. Schubert, M. H. Crawford, and D. D. Koleske, “The origin of the high diode-ideality factors in GaInN/GaN multiple quantum well light-emitting diodes,” Appl. Phys. Lett., vol.94, pp. 081113, 2009.

    [40] C. L. Wang, M. C. Tsai, J. R. Gong, W. T. Liao, P. Y. Lin, K. Y. Yen, C. C. Chang, H. Y. Lin, and S. K. Hwang, “Influence of AlGaN/GaN superlattice inserted structure on the performance of InGaN/GaN multiple quantum well light emitting diodes,” Mater. Sci. Eng. B-Solid State Mater. Adv. Technol., vol. 138, pp. 180-183, 2007.

    [41] A. F. Phillips, S. J. Sweeney, A. R. Adams, and P. J. A. Thijs, “The temperature dependence of 1.3- and 1.5- m compressively strained InGaAs(P) MQW semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron., vol. 5, pp. 401-412, 1999.

    [42] K. T. Delaney, P. Rinke, and C. G. Van de Walle, “Auger recombination rates in nitrides from first principles,” Appl. Phys. Lett., vol. 94, pp. 191109, 2009.

    [43] Y. J. Liu, C. H. Yen, L. Y. Chen, T. H. Tsai, T. Y. Tsai, and W. C. Liu, “On a GaN-based light-emitting diode with a p-GaN/i-InGaN superlattice structure,” IEEE Electron Device Lett., vol. 30, pp. 1149-1151, 2009.

    [44] T. C. Wen, S. J. Chang, L. W. Wu, Y. K. Su, W. C. Lai, C. H. Kuo, C. H. Chen, J. K. Sheu, and J. F. Chen, “InGaN/GaN tunnel-injection blue light-emitting diodes,” IEEE Trans. Electron Devices, vol. 49, pp. 1093-1095, 2002.

    [45] C. F. Tsai, Y. K. Su, and C. L. Lin, “Improvement in the light output power of GaN-based light-emitting diodes by natural-cluster silicon dioxide nanoparticles as the current-blocking layer,” IEEE Photonics Technol. Lett., vol. 21, pp.996-998, 2009.

    [46] T. C. Wen, S. J. Chang, C. T. Lee, W. C. Lai, and J. K. Sheu, “Nitride-based LEDs with modulation-doped AlGaN-GaN superlattice structures,” IEEE Trans. Electron Devices, vol. 51, pp. 1743-1746, 2004.

    [47] S. R. Jeon, Y. H. Song, H. J. Jang, K. S. Kim, G. M. Yang, S. W. Hwang, and S. J. Son, “Buried tunnel contact junctions in GaN-based light-emitting diodes,” Phys. Stat. Sol. (a), vol. 188, pp. 167-170, 2001.

    [48] C. M. Lee, C. C. Chuo, I. L. Chen, J. C. Chang, and J. I. Chyi, “High-brightness inverted InGaN–GaN multiple-quantum-well light-emitting diodes without a transparent conductive layer,” IEEE Electron Device Lett., vol. 24, pp. 156-158, 2003.

    [49] S. R. Jeon, Y. H. Song, H. J. Jang, G. M. Yang, S. W. Hwang, and S. J. Son, “Lateral current spreading in GaN-based light-emitting diodes utilizing tunnel contact junctions,” Appl. Phys. Lett., vol. 78, pp. 3256-3258, 2001.

    [50] T. Takeuchi, G. Hasnain, S. Corzine, M. Hueschen, R. P. Schneider, C. Kocot, M. Blomqvist, Y. L. Cheng, D. Lefforge, M. R. Krames, L. W. Cook, and S. A. Stockman, “GaN-based light emitting diodes with tunnel junctions,” Jpn. J. Appl. Phys., vol. 40, pp. L861, 2001.

    [51] C. H. Jang, J. K. Sheu, C. M. Tsai, S. C. Shei, W. C. Lai, and S. J. Chang, “: Effect of thickness of the p-AlGaN electron blocking layer on the improvement of ESD characteristics in GaN-based LEDs,” IEEE Photonics Technol. Lett., vol. 20, pp. 1142-1144, 2008.

    [52] C. M. Tsai, J. K. Sheu, P. T. Wang, W. C. Lai, S. C. Shei, S. J. Chang, C. H. Kuo, C. W. Kuo, and Y. K. Su, “High efficiency and improved ESD characteristics of GaN-based LEDs with naturally textured surface grown by MOCVD,” IEEE Photon. Technol. Lett., vol. 18, pp. 1213–1215, 2006.

    [53] Siliconfareast.com (2001) [Online]. Available: http:// www.siliconfareast.com/esdmodels.htm.

    [54] D. Wang, M. Park, Y. N. Saripalli, M. A. L. Johnson, C. Zeng, D. W. Barlage, and J. P. Long, “Optical spectroscopic analysis of selected area epitaxially regrown n + gallium nitride,” J. Appl. Phys., vol. 99, pp. 123106, 2006.

    [55] L. Wang, M. I. Nathan, T. H. Lim, M. A. Khan, and Q. Chen, “High barrier height GaN Schottky diodes: Pt/GaN and Pd/GaN,” Appl. Phys. Lett., vol. 68, pp. 1267-1269, 1996.

    [56] S. Keller, C. Schaake, N. A. Fichtenbaum, C. J. Neufeld, Y. Wu, K. McGroddy, A. David, S. P. DenBaars, C. Weisbuch, J. S. Speck, and U. K. Mishra, “Optical and structural properties of GaN nanopillar and nanostripe arrays with embedded InGaN/GaN multi-quantum wells,” J. Appl. Phys., vol. 100, pp. 054314, 2006.

    [57] H. Song, J. S. Kim, E. K. Kim, Y. G. Seo, and S. M. Hwang, “Zero-internal fields in nonpolar InGaN/GaN multi-quantum wells grown by the multi-buffer layer technique,” Nanotechnology, vol. 21, pp. 134026, 2010.

    [58] Q. Zhou, J. Chen, B. Pattada, M. O. Manasreh, F. Xiu, S. Puntigan, L. He, K. S. Ramaiah, and H. Morkoc, “Infrared optical absorbance of intersubband transitions in GaN/AlGaN multiple quantum well structures,” J. Appl. Phys., vol. 93, pp. 10140-10142, 2003.

    [59] Y. W. Cheng, H. H. Chen, M. Y. Ke, C. P. Chen, and J. J. Huang, “Effect of selective ion-implanted p-GaN on the junction temperature of GaN-based light emitting diodes,” Opt. Commun., vol. 282, pp. 835-838, 2009.

    [60] A. Keppens, W. R. Ryckaert, G. Deconinck, and P. Hanselaer, “High power light-emitting diode junction temperature determination from current-voltage characteristics,” J. Appl. Phys., vol. 104, pp. 093104, 2008.

    [61] Y. Xi and E. F. Schubert, “Junction-temperature measurement in GaN ultraviolet light-emitting diodes using diode forward voltage method,” Appl. Phys. Lett., vol. 85, pp. 2163-2165, 2004.

    [62] Y. J. Liu, C. H. Yen, K. H. Yu, P. L. Lin, L. Y. Chen, T. H. Tsai, T. Y. Tsai, and W. C. Liu, “Characteristics of an AlGaInP-based light emitting diode with an indium-tin-oxide (ITO) direct Ohmic contact structure,” IEEE J. Quantum Electron., vol. 46, pp. 246-252, 2010.

    [63] S. Hwang and J. Shim, “A method for current spreading analysis and electrode pattern design in light-emitting diodes,” IEEE Trans. Electron Devices, vol. 55, pp. 1123-1128, 2008.

    [64] X. Guo and E. F. Schubert, “Current crowding in GaN/InGaN light emitting diodes on insulating substrates,” J. Appl. Phys., vol. 90, pp. 4191-4195, 2001.

    [65] L. Zhou, W. Lanford, A. T. Ping, and I. Adesida, “Low resistance Ti/Pt/Au ohmic contacts to p-type GaN,” Appl. Phys. Lett., vol. 76, pp. 3451-3453, 2000.

    [66] K. M. Chang, J. Y. Chu, and C. C. Cheng, “Highly reliable GaN-based light-emitting diodes formed by p–In0.1Ga0.9N–ITO structure,” IEEE Photonics Technol. Lett., vol. 16, pp. 1807-1809, 2004.

    [67] C. S. Chang, S. J. Chang, Y. K. Su, C. H. Kuo, W. C. Lai, Y. C. Lin, Y. P. Hsu, S. C. Shei, J. M. Tsai, H. M. Lo, J. C. Ke, and J. K. Sheu, “High brightness InGaN green LEDs with an ITO on n ++ -SPS upper contact,” IEEE Trans. Electron Devices, vol. 50, pp. 2208-2212, 2003.

    [68] T. Gessmann, Y. L. Li, E. L. Waldron, J. W. Graff, and J. K. Sheu, “Ohmic contacts to p-type GaN mediated by polarization fields in thin InxGa1-xN capping layers,” Appl. Phys. Lett., vol. 80, pp. 986-988, 2002.

    [69] Y. J. Liu, C. H. Yen, C. H. Hsu, K. H. Yu, L. Y. Chen, T. H. Tsai, and W. C. Liu, “Impact of An indium oxide/indium–tin oxide mixed structure for GaN-based light-emitting diodes,” Opt. Rev., vol. 16, pp. 575-577, 2009.

    [70] S. K. Julita, G. Szymon, L. S. Elzbieta, P. Ryszard, N. Grzegorz, L. Michał, P. Piotr, T. Ewa, K. Jan, and K. Stanisław, “Ni–Au contacts to p-type GaN – Structure and properties,” Solid-State Electronics, vol. 54, pp. 701-709, 2010.

    [71] J. L. Lee, M. Weber, J. K. Kim, J. W. Lee, Y. J. Park, T. Kim, and K. Lynn, “Ohmic contact formation mechanism of nonalloyed Pd contacts to p-type GaN observed by positron annihilation spectroscopy,” Appl. Phys. Lett., vol. 74, pp. 2289-2291, 1999.

    [72] Y. Koide, T. Maeda, T. Kawakami, S. Fujita, T. Uemura, N. Shibata and M. Murakami, “Effects of annealing in an oxygen ambient on electrical properties of ohmic contacts to p-type GaN,” J. Electron. Mater., vol. 28, pp. 341-346, 1999.

    [73] S. Nakahara and E. Kinsbron, “Room temperature interdiffusion study of Au/Ga thin film couples,” Thin Solid Films, vol. 113, pp. 15-26, 1984.

    [74] M. Puselj and J. Schubert, Less-Common Met., vol. 38, pp. 83, 1974.

    [75] I. Waki, H. Fujioka, M. Oshima, H. Miki, and A. Fukizawa, “Low-temperature activation of Mg-doped GaN using Ni films,” Appl. Phys. Lett. vol. 78, pp. 2899-2901, 2001.

    [76] L. Lee, W. C. Fan, J. T. Ku, W. H. Chang, W. K. Chen, W. C. Chou, C. H. Ko, C. H. Wu, Y. R. Lin, C. H. Wann, C. W. Hsu, Y. F. Chen, and Y. K. Su, “Cathodoluminescence studies of GaAs nano-wires grown on shallow-trench-patterned Si,” Nanotechnology, vol. 21, pp. 465701, 2010.

    [77] H. Uslu, A. Bengi, S. S. Cetin, U. Aydemir, S. Altındal, S. T. Aghaliyeva, and S. Özcelik, “Temperature and voltage dependent current-transport mechanisms in GaAs/AlGaAs single-quantum-well lasers,” J. Alloy. Compd., vol. 507, pp. 190-195, 2010.

    [78] W. Zhang, N. W. Emanetoglu, N. Bambha, and J. R. Bickford, "Design and analysis of In0 53Ga0 47As/InP symmetric gain optoelectronic mixers," Solid-State Electron., vol. 54, pp. 1549-1553, 2010.

    [79] J. P. Liu, “Investigations on V-defects in quaternary AlInGaN epilayers,” Appl. Phys. Lett., vol. 84, pp. 5449-5451, 2004.

    [80] C. F. Lin, J. J. Dai, M. S. Lin, and C. C. Chen, "An AlN sacrificial buffer layer embedded into the InGaN light emitting diodes for a chemical lateral etching process," Electrochem. Solid State Lett., vol. 13, pp. 309-312, 2010.

    [81] K. Motoki, T. Okahisa, R. Hirota, S. Nakahata, K. Uematsu, and N. Matsumoto, "Dislocation reduction in GaN crystal by advanced-DEEP," J. Cryst. Growth, vol. 305, pp. 377-383, 2007.

    [82] S. W. Kim, H. Aida, and T. Suzuki, “The effect of a slight mis-orientation angle of c-plane sapphire substrate on surface and crystal quality of MOCVD grown GaN thin films,” Phys. Stat. Sol. (c), vol. 10, pp. 2483-2486, 2004.

    [83] D. Lu, D.I. Florescu, D.S. Lee, V. Merai, J.C. Ramer, A. Parekh, and E.A. Armour, “Sapphire substrate misorientation effects on GaN nucleation layer properties,” J. Cryst. Growth, vol. 272, pp. 353-359, 2004.

    [84] Z. Y. Li, M. H. Lo, C. H. Chiu, P. C. Lin, T. C. Lu, H. C. Kuo, and S. C. Wang, “Carrier localization degree of In0.2Ga0.8N/GaN multiple quantum wells grown on vicinal sapphire substrates,” J. Appl. Phys., vol. 105, pp. 013013, 2009.

    [85] X. Q. Shen, M. Shimizu, T. Yamamoto, Y. Honda, and H. Okumura, “Characterizations of GaN films and GaN/AlN super-lattice structures grown on vicinal sapphire (0 0 0 1) substrates by RF-MBE,” J. Cryst. Growth, vol. 278, pp. 378-382, 2005.

    [86] R. W. Chuang, C. L. Yu, S. J. Chang, P. C. Chang, J. C. Lin, and T. M. Kuan, “Crystal growth and characterization of AlGaN/GaN heterostructures prepared on vicinal-cut sapphire (0 0 0 1) substrates,” J. Cryst. Growth, vol. 308, pp. 252-257, 2007.

    [87] A. Nakamura, N. Yanagita, T. Murata, K. Hoshino, and K. Tadatomo, “Effects of sapphire substrate misorientation on the GaN-based light emitting diode grown by metalorganic vapour phase epitaxy,” Phys. Stat. Sol. (c), vol. 5, pp. 2007-2009, 2008.

    [88] X. Q. Shen, H. Matsuhata, and H. Okumura, “Reduction of the threading dislocation density in GaN films grown on vicinal sapphire (0001) substrates,” Appl. Phys. Lett., vol. 86, pp. 021912, 2005.

    [89] M. A. Mastro, J. D. Caldwell, R. T. Holm, R. L. Henry, and C. R. Eddy Jr., “Design of Gallium Nitride Resonant Cavity Light-Emitting Diodes on Si Substrates,” Adv. Mater., vol. 20, pp. 115-118, 2008.

    [90] T. Lei, K. F. Ludwig, and T. D. Moustakas, “Heteroepitaxy, polymorphism, and faulting in gain thin-films on silicon and sapphire substrates,” J. Appl. Phys., vol. 74, pp. 4430-4437, 1993.

    [91] X. L. Tong, L. Li, D. S. Zhang, Y. T. Dai, D. J. Lv, K. Ling, Z. X. Liu, P. X. Lu, G. Yang, Z. Y. Yang, and H. Long, “The influences of laser scanning speed on the structural and optical properties of thin GaN films separated from sapphire substrates by excimer laser lift-off,” J. Phys. D-Appl. Phys., vol. 42, pp. 045414, 2009.
    [92] O. Pursiainen, N. Linder, A. Jaeger, R. Oberschmid, and K. Streubel, “Identification of aging mechanisms in the optical and electrical characteristics of light-emitting diodes,” Appl. Phys. Lett., vol. 79, pp. 2895-2897, 2001.

    [93] J. Xu, M. F. Schubert, A. N. Noemaun, D. Zhu, J. K. Kim, E. F. Schubert, M. H. Kim, H. J. Chung, S. Yoon, C. Sone, and Y. Park, “Reduction in efficiency droop, forward voltage, ideality factor, and wavelength shift in polarization-matched GaInN/GaInN multi-quantum-well light-emitting diodes,” Appl. Phys. Lett., vol. 94, pp. 011113, 2009.

    [94] F. Rossi, M. Pavesi, M. Meneghini, G. Salviati, M. Manfredi, G. Meneghesso, A. Castaldini, A. Cavallini, L. Rigutti, U. Strass, U. Zehnder, and E. Zanoni, “Influence of short-term low current dc aging on the electrical and optical properties of InGaN blue light-emitting diodes,” J. Appl. Phys., vol. 99, pp. 053104, 2006.

    [95] M. L. Lucia, J. L. Hernandez-Rojas, C. Leon, and I. Martil, “Capacitance measurements of p-n junctions: depletion layer and diffusion capacitance contributions,” Eur. J. Phys., vol. 14, pp. 86-89, 1993.

    [96] X. M. Zhang, M. Y. Lu, Y. Zhang, L. J. Chen, and Z. L. Wang, “Fabrication of a high-brightness blue-light-emitting diode using a ZnO-nanowire array grown on p-GaN thin film,” Adv. Mater., vol. 21, pp. 2767-2770, 2009.

    [97] C. Y. Zhu, L. F. Feng, C. D. Wang, H. X. Cong, G. Y. Zhang, Z. J. Yang, and Z. Z. Chen, “Negative capacitance in light-emitting devices,” Solid-State Electron., vol. 53, pp. 324-328, 2009.

    [98] M. Meneghini, L. R. Trevisanello, G. Meneghesso, and E. Zanoni, “A review on the reliability of GaN-based LEDs,” IEEE Trans. Device Mater. Reliab., vol. 8, pp. 323-331, 2008.

    [99] K. S. Ramaiah, Y. K. Su, S. J. Chang, and C. H. Chen, “A comparative study of blue, green and yellow light emitting diode structures grown by metal organic chemical vapor deposition,” Solid-State Electron., vol. 50, pp. 119-124, 2006.

    [100] A. F. Jarjour, R. A. Oliver, A. Tahraoui, M. J. Kappers, R. A. Taylor, and C. J. Humphreys, “Experimental and theoretical study of the quantum-confined Stark effect in a single InGaN/GaN quantum dot under applied vertical electric field,” Superlattices Microstruct., vol. 43, pp. 431-435, 2008.

    [101] H. Wu, Y. Sun, D. Lin, R. Zhang, C. Zhang, and W. Pan, “GaN nanofibers based on electrospinning: facile synthesis, controlled assembly, precise doping, and application as high performance UV photodetector,” Adv. Mater., vol. 21, pp. 227-231, 2009.

    [102] S. Nakamura, “InGaN-based blue/green LEDs and laser diodes,” Adv. Mater., vol. 8, pp. 689-692, 1996.

    [103] S. W. Ryu, J. Park, J. K. Oh, D. H. Long, K. W. Kwon, Y. H. Kim, J. K. Lee, and J. H. Kim, “Analysis of improved efficiency of InGaN light-emitting diode with bottom photonic crystal fabricated by anodized aluminum oxide,” Adv. Funct. Mater., vol. 19,pp. 1650-1655, 2009.

    [104] C. L. LEE, and W. I. LEE, “Using planarized p-GaN layer to reduce electrostatic discharged damage in nitride-based light-emitting diode,” Jpn. J. Appl. Phys., vol. 46, pp. L457-460, 2007.

    [105] S. C. Shei, J. K. Sheu, and C. F. Shen, “Improved reliability and ESD characteristics of flip-chip GaN-based LEDs with internal inverse-parallel protection diodes,” IEEE Electron Device Lett., vol. 28, pp. 346-349, 2007.

    [106] S. K. Jeon, J. G. Lee, E. H. Park, J. Jang, J. G. Lim, S. K. Kim, and J. S. Park, “The effect of the internal capacitance of InGaN-light emitting diode on the electrostatic discharge properties,” Appl. Phys. Lett., vol. 94, pp. 131106, 2009.

    [107] C. H. Chen, S. J. Chang, and Y. K. Su, “High electrostatic discharge protection of InGaN/GaN MQW LEDs by using GaN Schottky diodes,” Phys. Stat. Sol. (a), vol. 200, pp. 91-94, 2003.

    [108] T. Y. Park, M. S. Oh, and S. J. Park, “Improvement of electrostatic discharge characteristics and optical properties of GaN-based light-emitting diodes,” IEEE Electron Device Lett., vol. 30, pp. 937-939, 2009.

    [109] H. Y. Shin, S. K. Kwon, Y. I. Chang, M. J. Cho, and K. H. Park, “Reducing dislocation density in GaN films using a cone-shaped patterned sapphire substrate,” J. Cryst. Growth, vol. 311, pp. 4167-4170, 2009.

    [110] T. Makino, N. Tokuda, H. Kato, M. Ogura, H. Watanabe, S. G. Ri, S. Yamasaki, and H. Okushi, “Electrical and light-emitting properties of (001)-oriented homoepitaxial diamond p–i–n junction,” Diam. Relat. Mat., vol. 16, pp. 1025-1028, 2007.

    [111] Y. J. Liu, T. Y. Tsai, C. H. Yen, L. Y. Chen, T. H. Tsai, C. C. Huang, T. Y. Chen, C. H. Hsu, and W. C. Liu, “Performance investigation of GaN-based light-emitting diodes with tiny misorientation of sapphire substrates,” Optics Express, vol. 18, pp. 2729-2742, 2010.

    [112] Y. C. Cheng, K. Tai, S. T. Chou, K. F. Huang, W. J. Lin, and C. H. Lin, “Reduction of spontaneous surface segregation in (InP)2/(GaP)2 quantum wells grown on tilted substrates,” Jpn. J. Appl. Phys., vol. 38, pp. 17-21, 1999.

    [113] G. S. Park and J. K. Kwon, “Degradation of ITO/PET films in humid and contaminative environments studied by TEM,” J. Mater. Sci.-Mater. Electron., vol. 12, pp. 497-503, 2001.

    [114] T. Minami, H. Sonohara, and T. Kakumu, “Physics of very thin ITO conducting films with high transparency prepared by DC magnetron sputtering,” Thin Solid Films, vol. 270, pp. 37-42, 1995.

    [115] V. Shrotriya and Y. Yang, “Capacitance-voltage characterization of polymer light-emitting diodes,” J. Appl. Phys., vol. 97, pp. 054504, 2005.

    [116] M. Sun and Y. Lu, “Nonlinearity in ESD robust InGaAs p-i-n photodiode,” IEEE Trans. Electron Devices, vol. 52, pp. 1508-1513, 2005.

    [117] Q. G. Wang, X. J. Zhang, S. P. Wang, and C. L. Liu, “Research on the possibility of ignition of materials by electrostatic discharge in pure oxygen environment at different pressures,” J. Electrost., pp. 1-4, 2009.

    無法下載圖示 校內:2020-01-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE