| 研究生: |
王建皓 Wang, Chien-Hao |
|---|---|
| 論文名稱: |
利用聚醯亞胺酸與鈦醇鹽類為前驅物進行高均勻性之電泳封裝研究 Using polyamic acid and titanium alkoxide as precursors to form uniform package by electrophoretic deposition |
| 指導教授: |
周澤川
Chou, Tse-Chuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 238 |
| 中文關鍵詞: | 二氧化鈦 、奈米複合材料 、聚醯亞胺 、電泳沈積 |
| 外文關鍵詞: | electrophoresis, nanocomposite, titania, polyimide |
| 相關次數: | 點閱:63 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究為一利用有機單體 (ODA+PMDA)先合成聚醯亞胺酸,再經由鈦烷氧化合物 (TET) 以Actylacetone 作為熬合劑,發生溶膠-凝膠反應與聚醯亞胺酸均勻混合,經過高溫環化之後以形成聚醯亞胺/TiO2 複合材料。研究中使用了 TGA、TMA 來測試材料的熱穩定性質,以四點探針儀用來測試材料的絕緣性質,XRD 用來測試材料的結晶性質,IR 用來鑑定材料的官能基,ESCA 與 EDX 用來量測材料的組成以及比例,另外,也使用了 SEM 來觀察材料的表面形態,以了解其有機/無機界面是否有相分離的情形發生,利用 TEM 觀察二氧化鈦無機粒子粒徑大小。另外,為了瞭解材料本身對於耐燃性質的變化,也使用 UL-94 與 LOI兩種測試方法,去判定材料的難燃性,為了瞭解材料本身對於封裝上的影響,也做了滲水性與吸水度的測定。
就本實驗而言,在實驗中所量測聚醯亞胺的熱裂解溫度約為590℃,若聚醯亞胺內添加少量的 TiO2 粒子會增加材料的熱裂解溫度大約 10 ~ 15℃,約為 605℃。但當摻雜過多的 TiO2 無機粒子,其熱裂解溫度就開始下降,到摻雜約 20 wt% 時,熱裂解溫度甚至只有 480℃,此外就材料的玻璃轉移溫度(Tg)而言,加入奈米 TiO2 粒子於聚醯亞胺高分子內對於材料的玻璃轉移溫度(Tg)也是會有增加的效果。由實驗結果中,所測得聚醯亞胺其玻璃轉移溫度約為 350℃,而聚醯亞胺/TiO2 複合材料的玻璃轉移溫度高於聚醯亞胺大約 10℃,在耐燃性測試方面,由實驗的結果中可以發現,當摻雜 TiO2 無機粒子的確可以有效增加材料的難燃性質,在結果中,聚醯亞胺以及聚醯亞胺/TiO2 複合材料在 UL-94 測試方面,皆符合 V-0 級的標準,在 LOI 的測試裡,聚醯亞胺其 OI 值為 32,其結果已符合難燃材料,但在聚醯亞胺/TiO2 複合材料卻有更佳的表現,其 OI 值更可到達 40,另外,在吸濕度方面,知道聚醯亞胺吸濕率約為 3.33wt%,而在摻雜 1wt% TiO2 無機粒子的複合材料,吸濕率就降低至 2.7wt%, 利用 TEM、SEM 觀察 TiO2 粒徑大小及材料表面,低摻雜量時,可以發現 TiO2 無機粒子會和聚醯亞胺高分子的確有相當良好的互容性,但隨著摻雜量的增加,TiO2 逐漸聚集在一起,而造成相分離的情況。另外,在 TEM 的觀察中,TiO2 粒子的大小約從 5nm ~ 25nm 不等分佈在聚醯亞胺高分子內,隨著摻雜量的增多,其無機粒子粒徑也會有增加的趨勢。
在電泳沈積實驗方面,電泳沈積複合高分子之操作受多種因素所影響,其中有施加電位、電泳沈積時間、熱處理方式以及鍍液成份等。觀察不同組成之鍍液中發現, 絕緣膜的沉積量會隨著Acetone/NMP 之體積比降低以及三乙基胺 (triethylamine, TEA)的添加量增大而會有增加的趨勢。也會隨著施加電壓與沈積時間增加而增加,沈積絕緣膜的表面電阻值,並由數據中得知其Acetone/NMP 之體積比與TEA/COOH 之莫耳比並不會對於絕緣膜的表面電阻值造成太大的影響,但是各絕緣膜之表面電阻值都有108 Ohm/□以上的水準,本研究亦利用 SEM 與 AFM 來觀察沈積絕緣膜內是否含有 TiO2 粒子,並且觀察沈積絕緣膜的表面與斷面微結構以及是否會產生有機相和無機相之間的相容性不佳而造成相分離的情形,由結果中發現,可以確定利用電泳沈積法來製備無機奈米複合緣膜為可行的,的確在 SEM 照片中,可以清楚的看見 TiO2 無機粒子的存在,只是在照片中,也發現有些微的相分離的現象,另外,將所製絕緣膜浸泡於各種溶劑及強酸、鹼中,經過長時間,發現除了 KOH 以及 HCl 之外,會使得絕緣膜有脫落的現象,其他的溶劑中,依然是保持的相當完整。由此可知,聚醯亞胺/TiO2 複合沈積膜,對於各種化學溶劑有著相當不錯的阻值,且耐久性也是相當不錯的。
In this study, two kinds of monomers- 4, 4-diaminodiphenyl ether (ODA) and pyromellitic dianhydride (PMDA) were employed to synthesize the polyamic acid- a precursor of polyimide. TiO2 sol. was obtained from titanium ethoxide (TET) and acetylacetone by sol-gel method. After imidization, the PI/titania hybrid films were obtained. In order to understand whether the nano-titania particle was introduced into polymer matrix and enhanced the thermal properties, we employed instruments to test its thermal properties. Thermogravimetric analysis (TGA) and thermal mechanical analysis (TMA) were used to test the heat properties. According to the results of the TGA, the thermal decomposition temperature (Td) of the polyimide/titania hybrid films had the best value as the content of TiO2 was 1wt%. The temperature of decomposition was about 15℃ where was larger than that of the pure polyimide. From TMA results, we knew the glass transition temperature of polyimide/titania hybrids was larger than that of a pure polyimide. Besides, the dielectric properties of hybrid films as measured by four-point probe; the crystallization analyzed by X-ray spectrometer (XRD); furthermore, electron spectroscopy for chemical analysis (ESCA) and energy-dispersive spectrometer (EDS) were employed to measure the polyimide and polyimide/titaina hybrid films qualitatively and quantitatively. The surface morphology of the materials were observed with a scanning electron microscopy (SEM) and we could know the particle size of TiO2 by using transmission electron microscopy (TEM), the size of TiO2 in polyimide matrix was about 5 ~ 25nm.
In the second part, a precursor of 10wt% TiO2 content of polyimide/titania hybrids, changed the molar ratio of the triethylamine (TEA) and carboxyl group in polyamic acid (TEA/COOH) and the volume ratio of acetone and NMP (Acetone/NMP) solvent to obtain different electrobath which were used for electrophoretic deposition. The quantity of deposition, average deposition rate and the film thickness of the polyimide/titania passivation films changed because of the cell voltage and the electrophoresis deposition time. In this electrophoresis system, the amount of the passivation film was increased with the increasing cell voltage and the deposition time linearly. The average deposition rate only changed in the cell voltage, it also increased with cell voltage increased, and decreased with deposition time. Because of current (deposition rate) slowly decreased with the deposition time. In addition, the most important aspect about this electrophoresis process, which was controlled the thickness of the passivation films. The films thickness was controlled by the cell voltage and the deposition time, which could increase the thickness of the passivation films. SEM and SPM also observed the microstructure of the nano-titania particles and the dispersive conditions in the passivation films. The results indicated that the particles were dispersive homogeneously and without agglomeration in the passivation films. The theoretical analysis of this research showed that for the PAA with TiO2 sol. under applied voltage of 80V and based on the composition of the electrolyte which is the TEA/COOH mole ratio and the Acetone/NMP volume ratio.
1.Agag, T.; Koga, T.; Takeichi, T., “Studies on Thermal and Mechanical Properties of Polyimide-Clay Nanocomposites” , Polymer, 42, 3399(2001).
2.Alvino, W. M.; Scala, L. C.,“Electrodeposition of Polymers from Nonaqueous Systems. I Polyimides: Some Deposition Parameters”, J. Appl. Polym. Sci., 27, 341(1982).
3.Alvino, W. M.; Fuller, T. J.; Scala, L. C., “Electrodeposition Deposition of Polymers. II. Polyimides: A Coulombic Study”, J. Appl. Polym. Sci., 28, 267(1983).
4.Alvgustinik, A. I.; Vigdergauz, V. S.; Zhuravlev, G. I., “ Electrophoretic Deposition of Ceramic Masses from Suspensions and Calculation of Deposit Yields” , J. Appl. Chem. 35, 2090(1962)
5.Bard, A. J.; Faulkner, L. R.,“Electrochemical Methods”, John Wiley & Sons, Inc., U.S.A., 11(2001).
6.Bershtein, V. A.; Egorova, L. M.; Yakushev, P. N.; Pissis, P.; Brozova, L.; Sysel, P., “ Molecular Dynamics in Nanostructured Polyimide-Silica Hybrid Materials and Their Thermal Stability” J. Polym. Sci. part B: Polym. Phys. 40, 1056(2002)
7.Breval, E.; Mulvihill, M. L.; Dougherty, J. P. Newnham, R. E., “Polyimide-Silica Microcomposite Films” , J. Mater. Sci., 27, 3297(1992).
8.Brekner, M. J.; Feger C., “ Curing Studies of a Polyimide Precursor. II. Polyamic Acid”, J. Polym. Sci.: Part A, 25, 2479(1987).
9.Brown, J. M.; Curliss, D.; Vaia, R. A., “Thermoset-Layered Silicate Nanocomposites. Quaternary Ammonium Montmorillonite with Primary Diamine Cured Epoxies” , Chem. Mater., 12, 3376(2000).
10.Buchwalter, S. L.“Electrophoretic Deposition of Polyimide: Electrocoating on The Cathode ” , Proceedings of ACS, 59, 1988).
11.Chen, Y.; Iroh, J. O., “ Electrodeposition of BTDA-ODA-PDA Polyamic Acid Coatings on Carbon Fibers from Nonaqueous Emulsions”, Polym. Eng. Sci., 39, 699(1999).
12.Chen, X. H.; Gonsalves, K. E., “Synthesis and Properties of an Aluminum Nitride Polyimide Nanocomposite Prepared by a Nonaqueous Suspension Process” , J. Mater. Res., 12, 1274(1997).
13.Chiang, P. C., Whang, W. T., “The Synthesis and Morphology Characteristic Study of BAO-ODPA Polyimide/TiO2 Nano Hybrid Films”, polymer, 44, 2249(2003)
14.Christensen, R.,“ Analysis of Variance, Design and Regression”, Chapman & Hall, London, 567(1996).
15.Chris, J. C.; Marand, E., “Hybrid Silica-Polyimide Composite Membrane: Gas Transport Properties”, J. Mem. Sci., 202,97(2002)
16.Delozier, D. M.; Orwoll, R. A.; Cahoon, J. F,; Johnston, N. J.; Smith Jr, J. G.; Connell, J. W., “Preparation and Characterization of Polyimide/Organoclay Nanocomposites” polymer 43, 813(2002)
17.Doeuff, S.; Henry, M.; Sanchez, C. and Livage, J. “Hydrolysis of Titanium Alkoxides: Modification of the Molecular Precursor by Acetic Acid”, J. Non-cryst. Solids, 89, (1987)206-216
18.Feger, C., “Curing of Polyimides”, Polym. Eng. Sci., 29, 347(1989).
19.Fiet, E. D.; Wilins, C. W., “Polymer Materials For Electronic Applications”, American Chemical Society Washington D.C.,1 (1982).
20.Gaw, K.; Suzuki, H.; Jikei, M.; Kakimoto, M.; Imai, Y., “ Synthesis of Various Polyimides Using Tetrahydrofuran/Methanol as Solvent ” , Polym. J., 29, 290(1997).
21.Gupta, S. A.; Gupta, R. K., “Parametric Study of Spin Coating over Topography”, Ind. Eng. Chem. Res., 37, 2223(1998).
22.Haridas, M. M.; Datta S.; Bellare, J. R., “Time and Temperature Based Gellability Zones in Modified Titanium Alkoxide Sols” Ceramics inter. 25, 601(1999).
23.Ho, S. M.; Wang, T. H.; Chen, H. L.; Chen, K. M.; Lian, S. M.; Hung, A,“Metallization of Polyimide Film by Wet Process”, J. Appl. Polym. Sci., 51, 1373(1994).
24.Hu, Q.; Marand, E., “In Situ Formation of Nanosized TiO2 Domains Within Poly(amide-imide) by a Sol-Gel Process” , Polymer, 40, 4833(1999).
25.Huang, W. X.; Wunder, S. L., “ A Dynamic FT-IR Method for Determining the Curing Temperature Ranges of an Acetylene-Terminated Polyisoimide Prepolymer ” , J. Appl. Polym. Sci., 59, 511(1996).
26.Hsiue, G. H.; Chen, J. K.; Liu, Y. L., “Synthesis and Characterization of Polyimide-Silica Hybrid from Nanoqueous Sol-Gel Process” J. Appl. Polym. Sci. 76, 1609(2000).
27.Hsiue, G. H.; Liu, Y. L.; Liao, H. H., “Flame-Retardant Epoxy Resins: An Approach from Organic-Inorganic Hybrid Nanocomposites” , J. Polym. Sci.: Part A: Polym. Chem., 39, 986 (2001).
28.Inoue, H.; Sasaki, Y.; Ogawa, T.,“Comparison of One-pot and Two-step Polymerization of Polyimide from BPDA/ODA”, J. Appl. Polym. Sci., 60, 123(1996).
29.Iroh, I. O.; Yuan, W.,“Formation of Graphite Fiber – Polyimide Prepregs by Electrodeposition”, J. Appl. Polym. Sci., 59, 737(1996).
30.Kamiya, K.; Sakka, S. “Thermal Expansion of TiO2-SiO2 and TiO2-GeO2 Glasses”, J. Non-Cryst. Solids., 52, (1982)357.
31.Kamiya, K.; Tanimoto, K. and Yoko, T., “Preparation of TiO2 Fibers by Hydrolysis and Polycondensation of Ti(O-i-C3H7)4”, J. Mater. Sci. Lett., 5, (1986)402.
32.Khune, G. D.,“Preparation and Properties of Polyimides from Diisocyanates”, J. Macromal. Sci. Chem., 14, 687(1980).
33.Kitoh, M.; Honda, Y., “ Preparation and Tribological Properties of Sputtered Polyimide Film”, Thin Solid Films, 271, 92(1995).
34.Kim,Y.; Lee, W. K.; Cho, W. J.; Ha, C. S.; Ree, M.; Chang, T., “Morphology of Organic-Inorganic Hybrid Composites in Thin-Films as Multichip Packaging Material” , Polymer International, 43, 129(1997).
35.Kong, Y.; Du, H.; Yang, J.; Shi, D.; Wang, Y.; Zhang, Y.; Xin, W., “Study on Polyimide/TiO2 Nanocomposite Membranes for Gas Separation” Desalination 146, 49(2002).
36.Kumar, K. P.; Kumar, J. and Keizer, K., “Effect of Peptization on Densification and Phase-Transformation Behavior of Sol-Gel- Derived Nanostructured Titania”, J. Am. Ceram. Soc., 77(5), (1994)1396-1400
37.Lauver, R. W., J. Polym. Sci., 17, 2529(1979).
38.Lee, Y. D.; Lu, C. C.; Lee, H. R.,“Synthesis, Characterization, and Properties of Photosensitive Silicon-Containing Copolyimides”, J. Appl. Polym. Sci., 41, 877(1990).
39.Liang, Z. M.; Yin, J.; Xu, H. J., “Polyimide/Montmorillonite Nanocomposites Based on Thermally Stable, Rigid-Rod Aromatic Amine Modifiers” polymer 44, 1391(2003).
40.Linda, L; Bidstrup, S. A., “ Processing Effects on Optical Anisotropy in Spin-Coated Polyimide Films”, J. Appl. Polym. Sci., 49, 1277(1993).
41.Linde, H. G., “Polyamic Acid Interactions at Metal Surfaces”, J. Appl. Polym. Sci., 40, 2049(1990).
42.Livage, J. ; Doeuff, S.; Henry M. and Sanchez, C. “Hydrolysis of Titanium Alkoxides: Modification of the Molecular Precursor by Acetic Acid”, J. Non-cryst. Solids, 89, (1987)206-216
43.Madani, M. M.; Vedage, H. L.; Granata, R. D., “Evaluation of Polyimide Coatings Integrity by Positron Annihilation Lifetime Spectroscopy and Electrochemical Impedance Spectroscopy”, J. Electrochem. Soc., 144, 3293(1997).
44.Malibert, C.; Bach, S.; Legrand-Buscema, C., “ Elaboration and Characterization of Thin Films of TiO2 Prepared by Sol-Gel Process” Thin solid films. 418, 79(2002).
45.Melvin, M.,“Electrophoresis”, John Wiley & Sons, London, 1(1987).
46.Mercer, F. W.; Mckenzie, M. T., “Fluorinated Poly(Ether Imide Benzoxazole)” , High perform polym, 5, 97(1993).
47.Mittal, K. L.,“Polyimides: Synthesis, “Characterization and Applications”, Plenum Press, New York, 1(1984).
48.Miwa, T.; Numata, S.,“A Mechanism Describing Polyamic Acid Solution Viscosity Change on Storage at High Temperature”, Polymer, 30, 893(1989).
49.Miwa, T.; Tawata, R.; Numata, S., “ Relationship between Structure and Adhesion Properties of Aromatic Polyimides”, Polymer, 34, 621(1993).
50.Morikawa, A.; Iyoku, Y.; Kakimoto, M.; Imai, Y., “Preparation of New Polyimide-Silica Hybrid Materials Via the Sol-Gel Process” , J. Mater. Chem., 2, 679(1992).
51.Mourey, T. H.; Miller, S. M.; Wesson, J. A.; Long T. E.; Kelts, L. W., “Hydrolysis and Condensation Coupling of (Trimethoxysilyl)Phenyl-Terminated Polystyrene Macromonomers” ,Macromolecules, 25, 45(1992).
52.Nandi, M.; Conklin, J. A.; Salvati, L.; Sen, A., “Molecular-Level Ceramic Polymer Composites .2.1 Synthesis of Polymer-Trapped Silica and Titania Nanoclusters” , Chem. Mater., 3, 201(1991).
53.Nakamura, S.; Iida, K.; Sawa, G.,“Polyimide Films Prepared by Electrophoretic Deposition and Their Dielectric Breakdown”, SPIE, 2780, 72(1997).
54.Noell, J. L. W.; Wilkes, G. L.; Mohanty, D. K.; Mcgrath, J. E., “The Preparation and Characterization of New Polyether Ketone-Tetraethylorthosilicate Hybrid Glasses by the Sol-Gel Method” , Appl. Polym. Sci., 40, 1177(1990).
55.Odian, G.,“Principles of Polymerization”, John Wiley & Sons, Inc., US, 8(1991).
56.Phillips, D. C.,“Electrolytically Formed Polyimide Films and Coatings”, J. Electrochem. Soc., 119, 1645(1972).
57.Pletcher, D.; Walsh, F. C., “Industrial Electrochemistry”, Blackie A & P, UK, 441(1993).
58.Ponton, A.; Barboux-Doeuff, S.; Sanchez, “Rheology of Titanium Oxide Based Gels: Determination of Gelation Time Versus Temperature”, Coll. And Sur. 162, 177(1999).
59.Pouchert, C. J.,“The Aldrich Library of FT-IR Spectra”, Aldrich Chemical Company, Inc., U.S.A.,(1985).
60.Rathore, H. S.; Nguyen, D., “ Copper Metallization for Submicron Integrated Circuit Technology”, An Electrochemical Society Short Course, California, 17 (1998).
61.Rich, D. C.; Sichel, E. K.; Cebe, P,“Effect of Cure Conditions on Probimide 32 Polyamide-Imide”, J. Appl. Polym. Sci., 63, 1113(1997).
62.Rothman, L. B., “Properties of Thin Polyimide Films”, J. Electrochem. Soc., 127, 2216(1980).
63.Russat, J., “ Characterization of Polyamic Acid/Polyimide Films in the Nanometric Thickness Range from Spin-deposited Polyamic Acid ” , Surface and Interface Analysis, 11, 414(1988).
64.Philipp, G.; Schmidt, H., “New Materials for Contact Lenses Prepared from Si- and Ti-Alkoxides by the Sol-Gel Process” , J. Non-cryst. Solids., 63, 283(1984).
65.Sakka , S. and Kamiya, K. “Glasses from metal alcoholates”, J.Non-Cryst. Solids, 42, (1980)403
66.Sbramamian, P.; Sriniresam, M., “ Synthesis and Characterization of Polyimides Containing Heterocyclic Units”, J. Polym. Sci. Part A, 26, 1553(1988).
67.Surivet, F.; Lam, T. M.; Pascault, J. P.; Mai, C., “Organic Inorganic Hybrid Materials .2. Compared Structure of Polydimethylsiloxane and Hydrogenated Polybutadiene Based Ceramers” , Macromolecules, 25, 4309(1992).
68.Shang, X. Y.; Zhu, Z. K.; Lin, J.; Ma, X. D., “Compatibility of Soluble Polyimide/Silica Hybrids Induced by a Coupling Agent” Chem. Mater. 14, 71(2002)
69.Shaw, D. J., “ Electrophoresis ” , Academic Press, London, 1(1969).
70.Skoog, D. A.; Leary, J. J., “ Principles of Instrumental Analysis”, Saunders College Publishing, US, 252(1992).
71.Sroog, C. E.; Endrey, A. L.; Abramo, S. V.; Berr, C. E.; Edwards, W. M.; Olivier, K. L., “Aromatic Polypyromellitimides from Aromatic Polyamic Acids ” , J. Polym. Sci. Part A, 3, 1373(1965).
72.Stevens, M. P.,“Polymer Chemistry – An Introduction”, Oxford University Press, New York, 57(1990).
73.Taguchi, G.,“System of Experimental Design”, UNIPUB, New York, 188(1987).
74.Terabe, K.; Kato, K.; Miyazaki, H.; Yamaguchi, S. ; Imai, A.; Iguchi, Y. “Microstructure and Crystallization Behaviour of TiO2 Precursor Prepared by the Sol-Gel Method Using Metal Alkoxide”, J. Mater. Sci., 29, (1994)1617-1622
75.Tong, Y.; Li, Y.; Xie, F.; Ding, M., “Short Communication Preparation and Characteristics of Polyimide-TiO2 Nanocomposite Film”, polymer int. 49, 1543(2000)
76.Tsai, M. H,; Whang, W. T., “Low Dielectric Polyimide/Poly(silsesquioxane)-like Nanocompsoite Material” polymer 42, 4197(2001)
77.Uebner, M.; Ng, K. M.,“Electrodeposition of Polyimides from Nonaqueous Emulsions”, J. Appl. Polym. Sci., 36, 1525(1988).
78.Usuki, A.; Kojima, Y.; Kamigaito, O.; Okada, A.; Fukumori, K.; Kojima, Y.; Kurauchi, T., “Synyhesis of Nylon 6-ClayHybrid” , J. Mater. Res., 8, 1179(1992).
79.Von, K. H.; Thiele and Panse, M. Z., Anorg. Allg. Chem. Einzel., 441, (1978)23
80.Walker, C. C.,“ High Performance Size Exclusion Chromatography of Polyamic Acid”, J. Polym. Sci. Part A, 26, 1649(1988).
81.Wang, H. H.; Su, C. C.,“The Study on Synthesis of Thermostable Poly(amide-imide) Fibers (II)”, Chinese J. Mat. Sci., 28, 104(1996).
82.Wang, T. H.; Ho, S. M.; Chen, K. M.; Hung, A., “Temperature Effect on PI/Cu Interface ” , J. Appl. Polym. Sci., 47, 1057(1993).
83.White, L. K., “ Planarization Properties of Resist and Polyimide Coatings”, J. Electrochem. Soc., 130, 1543(1983).
84.Wu, H. S.; Jou, J. H.,“Vapor Deposition Polymerized Nonlinear Optical Polyimide Films-Vapor Deposition Polymerization and Preparation of Poling Electrodes”, Chinese. J. Mat. Sci., 28, 204(1996).
85.Yanagishita, H.; Nakane, T.; Nozoye, H.; Yoshitome, H., “ Preparation of Polyimide Composite Membrane by Chemical Vapor Deposition and Polymerization Technique (CVDP) ”, J. Appl. Polym. Sci., 49, 565(1993).
86.Yamada, T.; Inanami, R.; Morita, S., “Polyimide Transmitted E-beam excited CF4 Plasma Etching”, Thin Solid Films, 316, 13(1998).
87.Yang, C. P.; Hsiao, S. H.,“Effects of Various Factors on the Formation of High Molecular Weight Polyamic Acid”, J. App. Polym. Sci., 30, 2883(1985).
88.Yoldas, B.E, “Hydrolysis of titanium alkoxide and effects of hydrolytic polycondensation parameters”, J.Mater.Sci., 21, (1986) 1087
89.Yu, Y. H.; Yeh, J. M.; Liou, S. J.; Chang, Y. P., “Organo- Soluble Polyimide (TBAPP-OPDA)/Clay Nanocomposite Materials with Advanced Anticorrosive Properties Prepared from Solution Dispersion Technique” Acta Mater. 52, 475(2004)
90.Zhong, S. H.; Li, C. F.; Xiao, X. F., “ Preparation and Characterization of Polyimide-Silica Hybrid Membranes on Kieselguhr-Mullite Supports” J. Mem. Sci. 199, 53(2002)
91.Zhu, Y. C.; Ding, C. X., “Oriented Growth of Nano-TiO2 Whiskers”, Nanostructured Mater. 11, 3, 427(1999)
92.林美月,”以電泳沉積方式形成聚醯亞胺電子絕緣膜之研究”,國立成功大學化學工程研究所碩士論文,41(2000)。
93.余安平,“電子材料用含奈之聚醯亞胺樹脂的合成與性質研究”,國立成功大學化學工程研究所碩士論文,20(1997)。
94.林金雀,“聚醯亞胺樹脂在電子相關產業之應用”,化工資訊,8,29(1999)。
95.林榮堅,曾中英,陳美麗,“用於捲帶式晶粒接合(TAB)封裝的佈局規劃系統”, 電腦與通訊,26,24(1994)。
96.施宣仰,“聚異醯亞胺的製備及性質研究”,國立成功大學化學工程研究所碩士論文,5(1998)。
97.馬振基,“聚醯亞胺樹脂之合成得性與應用”,塑膠資訊,12,
14(1997)。
98.潘金平,“TAB 發展現況”,工業材料,100,90(1995)。
99.蔡東穎,“可溶性聚醯亞胺之研究”,國立成功大學化學工程研究所碩士論文,5(1998)。
100.蔡中燕,“奈米級無機材料的發展與應用”,化工資訊(1998)。
101.郭文法,“溶膠奈米複合材料”,化工資訊(1998)。
102.樂文禮,“聚醯亞胺奈米矽氧複合材料選擇性封裝之研究”,國立成功大學化學工程研究所碩士論文,(2002)
103.陳慧英, 謝坤龍, 朱秦億, 鈀銀合金/氧化鋁複合膜之特性研究:以溶膠凝膠法修飾基材孔徑之探討, 中國材料科學公元2000年年會, 高雄, Nov. 24-25 (2000).
104.Jones, R. W. “Fundamental Principles of Sol-Gel Technology”, The institute of metals(1989).
105.Chang, C. C.; Chen, W. C. “Synthesis and Optical Properties of Polyimide-Silica Hybrid Thin Films”, Chem. Mater. 14, 4242(2002)
106.Joly, C.; Goizet, S.; Schrotter, J. C.; Sanchez, J.; Escoubes, M. “Sol-Gel Polyimide-Silica Composite Membrane- Gas Transport Properties”, J. Mem. Sci. 130, 63(1997)