| 研究生: |
林惠茹 Lin, Huei-Ru |
|---|---|
| 論文名稱: |
大量表現熱休克蛋白質HSP101以提升菸草耐熱性之研究 A study to enhance thermotolerance in tobacco by overexpressing HSP101 |
| 指導教授: |
張清浚
Chang, Ching-Chun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生物科技研究所 Institute of Biotechnology |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 112 |
| 中文關鍵詞: | 熱逆境 、熱休克蛋白質HSP101 、加熱 、耐熱性 |
| 外文關鍵詞: | thermotolerance, heat, HSP101, heat stress |
| 相關次數: | 點閱:128 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
熱逆境對植物的生理活性造成很多方面的影響,不僅使作物產量減少也使得品質下降,利用基因工程技術來提高植物的耐熱性,不但可以改善此問題,提高作物產量,也可擴大耕地面積至溫度高的地區。
當植物從最適生長溫度先於非致死的高溫馴化一段時間,會誘導產生許多熱休克蛋白質,使其對更高溫的耐熱性被提升,此種耐熱性稱為誘導性耐熱性,HSP101是誘導性耐熱性當中最重要的蛋白質,主要功能在幫助將變性凝集的蛋白質解開,恢復蛋白質在植物中的功能。此外,菸草鑲嵌病毒5′UTR之ㄧ段富含CAA的序列稱為Ω序列,可促進轉譯效率,HSP101可結合在Ω吸引轉譯因子而形成轉譯起始複合物,進而提升轉譯效率,是故HSP101扮演轉譯活化子角色。我們利用農桿菌轉殖法,結合Ω提升轉譯效率的特性,將水稻HSP101分別表現於菸草的細胞核及葉綠體中,以期大量表現HSP101,提升植物耐熱性。
目前獲得2株利用Ω增強Oshsp101轉譯效率的同質純系轉殖植株。3株利用Ω以及Rubisco small subunit的葉綠體標的序列,將OsHSP101表達於葉綠體的同質純系轉殖株。2株表達於葉綠體但具有Histag的OsHSP101同質純系植株,這些植株的OsHSP101表現量皆高於原生型植株,初步耐熱測試結果顯示轉殖植株的修復能力比原生型植株佳。
Heat stress is detrimental to both the vegetative and reproductive stages of plants. The ability for plants to withstand heat stress may be of great importance in agricultural productivity. Genetically engineering approach to introduce the thermotolerant traits into crops has several advantages over traditional breeding program.
Heat shock proteins are induced when plants subject to high temperature stress. Particularly, HSP101 plays an important function in acquired thermotolerance of plants. One of the major functions of HSP101 is to promote the re-solubilization of aggregated proteins, and reactivate protein activity in cooperation with other molecular chaperones as a refolding machine under heat stress. In addition, HSP101 can bind to the 5’ leader sequence (Ω) of tobacco mosaic virus, and enhance the translational activity of RNA transcripts. To take advantage of dual activities of HSP101, We overexpressed OsHsp101 in the cytoplasm or chloroplasts of tobacco by nuclear transformation technology.
Two tobacco homozygous lines with Ω-regulating the expression of OsHsp101 in cytoplasm were obtained. One homozygous line with Ω-regulating the expression of OsHsp101 in chloroplasts was obtained. In addition, two homozygous lines with expression of His-tag OsHsp101 fusion protein in chloroplasts were obtained. The HSP101 expression levels are much higher in transgenic lines than wild type plants. Thermotolerant assay indicated that transgenic plants have better recovery ability than wild type after subjecting to heat treatment.
呂俊賢 (2004) 植物熱休克蛋白質HSP101的應用性研究. 國立成功大學生物科技研究所碩士論文
Adam Z, Adamska I, Nakabayashi K, Ostersetzer O, Haussuhl K, Manuell A, Zheng B, Vallon O, Rodermel SR, Shinozaki K, Clarke AK (2001) Chloroplast and mitochondrial proteases in Arabidopsis thaliana: a proposed nomenclature. Plant Physiol 125: 1912-1918
Agarwal M, Katiyar-Agarwal S, Sahi C, Gallie DR, Grover A (2001) Arabidopsis thaliana Hsp100 proteins: kith and kin. Cell Stress Chaperones 6: 219-224
Agarwal M, Sahi C, Katiyar-Agarwal S, Agarwal S, Young T, Gallie DR, Sharma VM, Ganesan K, Grover A (2003) Molecular characterization of rice hsp101: complementation of yeast hsp104 mutation by disaggregation of protein granules and differential expression in indica and japonica rice types. Plant Mol Biol 51: 543-553
Akita M, Nielsen E, Keegstra K (1997) Identification of protein transport complexes in the chloroplastic envelope membranes via chemical cross-linking. J Cell Biol 136: 983-994
Banzet N, Richaud C, Deveaux Y, Kazmaier M, Gagnon J, Triantaphylides C (1998) Accumulation of small heat shock proteins, including mitochondrial HSP22,induced by oxidative stress and adaptive response in tomato cells. Plant J. 13: 519-527
Behl RK, Heise KP, Moawad AM (1996) High temperature tolerance in relation to changes in lipids in mutant wheat. Tropenlandwirt 97: 131-135
Bock R (2001) Transgenic plastids in basic research and plant biotechnology. J Mol Biol 312: 425-438
Boston RS, Viitananen PV, Vierling E (1996) Molecular chaperones and protein folding in plants. Plant Mol Biol 32: 191-222
Campbell JL, Klueva NY, Zheng HG, Nieto-Sotelo J, Ho TD, Nguyen HT (2001) Cloning of new members of heat shock protein HSP101 gene family in wheat (Triticum aestivum (L.) Moench) inducible by heat, dehydration, and ABA(1). Biochim Biophys Acta 1517: 270-277
Chen DH, Ronald, P.C. (1999) A rapid DNA minipreparation method suitable for AFLP and other PCR applications. Plant Mol Biol Reporter 17: 53-57
Clarke SM, Mur LA, Wood JE, Scott IM (2004) Salicylic acid dependent signaling promotes basal thermotolerance but is not essential for acquired thermotolerance in Arabidopsis thaliana. Plant J 38: 432-447
Constan D, Froehlich JE, Rangarajan S, Keegstra K (2004) A stromal Hsp100 protein is required for normal chloroplast development and function in Arabidopsis. Plant Physiol 136: 3605-3615
Cronje MJ, Bornman L (1999) Salicyclic acid influences Hsp70/Hsc70 expression in Lycopersicon esculentum: dose- and time-dependent induction or potentiation. Biochem. Biophys. Res. Commun. 265: 422-427
Derre I, Rapoport G, Devine K, Rose M, Msadek T (1999) ClpE, a novel type of HSP100 ATPase, is part of the CtsR heat shock regulon of Bacillus subtilis. Mol Microbiol 32: 581-593
Dinkova TD, Zepeda H, Martinez-Salas E, Martinez LM, Nieto-Sotelo J, de Jimenez ES (2005) Cap-independent translation of maize Hsp101. Plant J 41: 722-731
Elliott RC, Pedersen TJ, Fristensky B, White MJ, Dickey LF, Thompson WF (1989) Characterization of a single copy gene encoding ferredoxin I from pea. Plant Cell 1: 681-690
Gallie DR (2002) The 5'-leader of tobacco mosaic virus promotes translation through enhanced recruitment of eIF4F. Nucleic Acids Res 30: 3401-3411
Gallie DR, Caldwell C, Pitto L (1995) Heat shock disrupts cap and poly(A) tail function during translation and increases mRNA stability of introduced reporter mRNA. Plant Physiol 108: 1703-1713
Gallie DR, Fortner D, Peng J, Puthoff D (2002) ATP-dependent hexameric assembly of the heat shock protein Hsp101 involves multiple interaction domains and a functional C-proximal nucleotide-binding domain. J Biol Chem 277: 39617-39626
Gallie DR, Sleat DE, Watts JW, Turner PC, Wilson TM (1987) A comparison of eukaryotic viral 5'-leader sequences as enhancers of mRNA expression in vivo. Nucleic Acids Res 15: 8693-8711
Gallie DR, Walbot V (1992) Identification of the motifs within the tobacco mosaic virus 5'-leader responsible for enhancing translation. Nucleic Acids Res 20: 4631-4638
Glover JR, Lindquist S (1998) Hsp104, Hsp70, and Hsp40: a novel chaperone system that rescues previously aggregated proteins. Cell 94: 73-82
Gong M, Chen SN, Song YQ, Li ZG (1997) Effect of calcium and calmodulin on intrinsic heat tolerance in relation to antioxidant systems in maize seedlings. Aust. J. Plant Physiol. 24: 371-379
Gurley WB (2000) HSP101: a key component for the acquisition of thermotolerance in plants. Plant Cell 12: 457-460
Herrmann JM, Neupert W (2000) Protein transport into mitochondria. Curr Opin Microbiol 3: 210-214
Hong SW, Lee U, Vierling E (2003) Arabidopsis hot mutants define multiple functions required for acclimation to high temperatures. Plant Physiol 132: 757-767
Hong SW, Vierling E (2000) Mutants of Arabidopsis thaliana defective in the acquisition of tolerance to high temperature stress. Proc Natl Acad Sci U S A 97: 4392-4397
Jagtap V, Bhargava S, Streb P, Feierabend J (1998) Comparative effect of water, heat and light stresses on photosynthetic reactions in Sorghum bicolor (L.) Moench. J. Exp. Bot. 49: 1715-1721
Katiyar-Agarwal S, Agarwal M, Grover A (2003) Heat-tolerant basmati rice engineered by over-expression of hsp101. Plant Mol Biol 51: 677-686
Kim BH, Schoffl F (2002) Interaction between Arabidopsis heat shock transcription factor 1 and 70 kDa heat shock proteins. J Exp Bot 53: 371-375
Kouranov A, Chen X, Fuks B, Schnell DJ (1998) Tic20 and Tic22 are new components of the protein import apparatus at the chloroplast inner envelope membrane. J Cell Biol 143: 991-1002
Krishna P, Gloor G (2001) The Hsp90 family of proteins in Arabidopsis thaliana. Cell Stress Chaperones 6: 238-246
Larkindale J, Hall JD, Knight MR, Vierling E (2005) Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance. Plant Physiol 138: 882-897
Larkindale J, Knight MR (2002) Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene, and salicylic acid. Plant Physiol 128: 682-695
Lee U, Wie C, Escobar M, Williams B, Hong SW, Vierling E (2005) Genetic Analysis Reveals Domain Interactions of Arabidopsis Hsp100/ClpB and Cooperation with the Small Heat Shock Protein Chaperone System. Plant Cell 17: 559-571
Levitt J (1980) Responses of Plants to Environmental Stress. Chilling, Freezing, and High Temperature Stresses.(Orlando, FL: Academic Press). I
Ling J, Wells DR, Tanguay RL, Dickey LF, Thompson WF, Gallie DR (2000) Heat shock protein HSP101 binds to the Fed-1 internal light regulator y element and mediates its high translational activity. Plant Cell 12: 1213-1227
Lutz Nover KB, Pascal Doring, Shravan Kumar Mishra, Arnab Ganguli, and Klaus-Dieter Scharf (2001) Arabidopsis and the Hsf world: how many heat stress transcription factors do we need? Cell Stress Chaperones 6: 177-189
Maestri E, Klueva N, Perrotta C, Gulli M, Nguyen HT, Marmiroli N (2002) Molecular genetics of heat tolerance and heat shock proteins in cereals. Plant Mol Biol 48: 667-681
Malik MK, Slovin JP, Hwang CH, Zimmerman JL (1999) Modified expression of a carrot small heat shock protein gene, hsp17. 7, results in increased or decreased thermotolerancedouble dagger. Plant J 20: 89-99
Milioni D, Hatzopoulos P (1997) Genomic organization of hsp90 gene family in Arabidopsis. Plant Mol Biol 35: 955-961
Mishra SK, Tripp J, Winkelhaus S, Tschiersch B, Theres K, Nover L, Scharf KD (2002) In the complex family of heat stress transcription factors, HsfA1 has a unique role as master regulator of thermotolerance in tomato. Genes Dev 16: 1555-1567
Morimoto RI, Tissieres A, Georgopoulos C (1994) The Biology of Heat Shock Proteins and Molecular Chaperones. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
Murakami Y, Tsuyama M, Kobayashi Y, JKodama h, Iba K (2000) Trienoic fatty acids and plant tolerance of high temperature. Science 287: 476-479
Nakabayashi K, Ito M, Kiyosue T, Shinozaki K, Watanabe A (1999) Identification of clp genes expressed in senescing Arabidopsis leaves. Plant Cell Physiol 40: 504-514
Nieto-Sotelo J, Martinez LM, Ponce G, Cassab GI, Alagon A, Meeley RB, Ribaut JM, Yang R (2002) Maize HSP101 plays important roles in both induced and basal thermotolerance and primary root growth. Plant Cell 14: 1621-1633
Osteryoung KW, Sundberg H, Vierling E (1993) Poly(A) tail length of a heat shock protein RNA is increased by severe heat stress, but intron splicing is unaffected. Mol. Gen. Genet. 239: 323-333
Panchuk, II, Volkov RA, Schoffl F (2002) Heat stress- and heat shock transcription factor-dependent expression and activity of ascorbate peroxidase in Arabidopsis. Plant Physiol 129: 838-853
Pareek A, Singla SL, Grover A (1998) Proteins alterations associated with salinity, desiccation, high and low temperature stresses and abscisic acid application in seedlings of Pusa 169, a high-yielding rice(Oryza sativa L.) cultivar. Curr. Sci. 75: 1023-1035
Petracek ME, Dickey LF, Nguyen TT, Gatz C, Sowinski DA, Allen GC, Thompson WF (1998) Ferredoxin-1 mRNA is destabilized by changes in photosynthetic electron transport. Proc Natl Acad Sci U S A 95: 9009-9013
Queitsch C, Hong SW, Vierling E, Lindquist S (2000) Heat shock protein 101 plays a crucial role in thermotolerance in Arabidopsis. Plant Cell 12: 479-492
Radin JW, Lu Z, Percy RG, Zeiger E (1994) Genetic variability for stomatal conductance in Pima cotton and its relation to improvements of heat adaptation. Proc Natl Acad Sci U S A 91: 7217-7221
Rapoport TA, Matlack KE, Plath K, Misselwitz B, Staeck O (1999) Posttranslational protein translocation across the membrane of the endoplasmic reticulum. Biol Chem 380: 1143-1150
Sairam RK, Srivastava GC, Saxena DC (2000) Increased antioxidant activity under elevated temperatures: a mechanism of heat stress tolerance in wheat genotypes. Biol. Plant. 43: 245-251
Schirmer EC, Glover JR, Singer MA, Lindquist S (1996) HSP100/Clp proteins: a common mechanism explains diverse functions. Trends Biochem Sci 21: 289-296
Schirmer EC, Lindquist S, Vierling E (1994) An Arabidopsis heat shock protein complements a thermotolerance defect in yeast. Plant Cell 6: 1899-1909
Shanklin J, DeWitt ND, Flanagan JM (1995) The stroma of higher plant plastids contain ClpP and ClpC, functional homologs of Escherichia coli ClpP and ClpA: an archetypal two-component ATP-dependent protease. Plant Cell 7: 1713-1722
Sjogren LL, MacDonald TM, Sutinen S, Clarke AK (2004) Inactivation of the clpC1 gene encoding a chloroplast Hsp100 molecular chaperone causes growth retardation, leaf chlorosis, lower photosynthetic activity, and a specific reduction in photosystem content. Plant Physiol 136: 4114-4126
Stone P (2001) The effects of heat stress on cereal yield and quality. In: A.S. Basra(Ed.) Crop Responses and Analysis to Temperature Stress,. Food Products Press, Binghamton, NY, pp.243-291
Storozhenko S, De Pauw P, Van Montagu M, Inze D, Kushnir S (1998) The heat-shock element is a functional component of the Arabidopsis APX1 gene promoter. Plant Physiol 118: 1005-1014
Sung DY, Guy CL (2003) Physiological and molecular assessment of altered expression of Hsc70-1 in Arabidopsis. Evidence for pleiotropic consequences. Plant Physiol 132: 979-987
Sung DY, Kaplan F, Lee KJ, Guy CL (2003) Acquired tolerance to temperature extremes. Trends Plant Sci 8: 179-187
Vettakkorumakankav NN, Falk D, Saxena P, Fletcher RA (1999) A crucial role for gibberellins in stress protection of plants. Plant Cell Physiol. 40: 542-548
Visioli G, Maestri E, Marmiroli N (1997) Differential display-mediated isolation of a genomic sequence for a putative mitochondrial LMW HSP specifically expressed in condition of induced thermotolerance in Arabidopsis thaliana (L) Heynh. Plant Mol. Biol. 34: 517-527
Walker JE, Saraste M, Runswick MJ, Gay NJ (1982) Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. Embo J 1: 945-951
Wang W, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9: 244-252
Wells DR, Tanguay RL, Le H, Gallie DR (1998) HSP101 functions as a specific translational regulatory protein whose activity is regulated by nutrient status. Genes Dev 12: 3236-3251
Yabe N, Takahashi T, Komeda Y (1994) Analysis of tissue-specific expression of Arabidopsis thaliana HSP90-family gene HSP81. Plant Cell Physiol 35: 1207-1219
Zhang C, Guy CL (2005) Co-immunoprecipitation of Hsp101 with cytosolic Hsc70. Plant Physiol Biochem 43: 13-18
Zheng B, Halperin T, Hruskova-Heidingsfeldova O, Adam Z, Clarke AK (2002) Characterization of Chloroplast Clp proteins in Arabidopsis: Localization, tissue specificity and stress responses. Physiol Plant 114: 92-101