簡易檢索 / 詳目顯示

研究生: 林惠茹
Lin, Huei-Ru
論文名稱: 大量表現熱休克蛋白質HSP101以提升菸草耐熱性之研究
A study to enhance thermotolerance in tobacco by overexpressing HSP101
指導教授: 張清浚
Chang, Ching-Chun
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生物科技研究所
Institute of Biotechnology
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 112
中文關鍵詞: 熱逆境熱休克蛋白質HSP101加熱耐熱性
外文關鍵詞: thermotolerance, heat, HSP101, heat stress
相關次數: 點閱:128下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   熱逆境對植物的生理活性造成很多方面的影響,不僅使作物產量減少也使得品質下降,利用基因工程技術來提高植物的耐熱性,不但可以改善此問題,提高作物產量,也可擴大耕地面積至溫度高的地區。
      當植物從最適生長溫度先於非致死的高溫馴化一段時間,會誘導產生許多熱休克蛋白質,使其對更高溫的耐熱性被提升,此種耐熱性稱為誘導性耐熱性,HSP101是誘導性耐熱性當中最重要的蛋白質,主要功能在幫助將變性凝集的蛋白質解開,恢復蛋白質在植物中的功能。此外,菸草鑲嵌病毒5′UTR之ㄧ段富含CAA的序列稱為Ω序列,可促進轉譯效率,HSP101可結合在Ω吸引轉譯因子而形成轉譯起始複合物,進而提升轉譯效率,是故HSP101扮演轉譯活化子角色。我們利用農桿菌轉殖法,結合Ω提升轉譯效率的特性,將水稻HSP101分別表現於菸草的細胞核及葉綠體中,以期大量表現HSP101,提升植物耐熱性。
      目前獲得2株利用Ω增強Oshsp101轉譯效率的同質純系轉殖植株。3株利用Ω以及Rubisco small subunit的葉綠體標的序列,將OsHSP101表達於葉綠體的同質純系轉殖株。2株表達於葉綠體但具有Histag的OsHSP101同質純系植株,這些植株的OsHSP101表現量皆高於原生型植株,初步耐熱測試結果顯示轉殖植株的修復能力比原生型植株佳。

     Heat stress is detrimental to both the vegetative and reproductive stages of plants. The ability for plants to withstand heat stress may be of great importance in agricultural productivity. Genetically engineering approach to introduce the thermotolerant traits into crops has several advantages over traditional breeding program.
     Heat shock proteins are induced when plants subject to high temperature stress. Particularly, HSP101 plays an important function in acquired thermotolerance of plants. One of the major functions of HSP101 is to promote the re-solubilization of aggregated proteins, and reactivate protein activity in cooperation with other molecular chaperones as a refolding machine under heat stress. In addition, HSP101 can bind to the 5’ leader sequence (Ω) of tobacco mosaic virus, and enhance the translational activity of RNA transcripts. To take advantage of dual activities of HSP101, We overexpressed OsHsp101 in the cytoplasm or chloroplasts of tobacco by nuclear transformation technology.
     Two tobacco homozygous lines with Ω-regulating the expression of OsHsp101 in cytoplasm were obtained. One homozygous line with Ω-regulating the expression of OsHsp101 in chloroplasts was obtained. In addition, two homozygous lines with expression of His-tag OsHsp101 fusion protein in chloroplasts were obtained. The HSP101 expression levels are much higher in transgenic lines than wild type plants. Thermotolerant assay indicated that transgenic plants have better recovery ability than wild type after subjecting to heat treatment.

    第一章、前言.......................................................................................................1 第二章、文獻探討...............................................................................................3 ㄧ、植物耐熱性介紹...........................................................................................3 1. 植物荷爾蒙與耐熱性................................................................................4 2. 耐熱性與活性氧化物的代謝....................................................................6 3. 鈣離子與耐熱性........................................................................................7 4. 膜流動性與植物耐熱性............................................................................8 5. 轉錄因子....................................................................................................9 6. 基因轉譯作用受熱的影響........................................................................9 7. 蛋白質的熱穩定性...................................................................................11 二、Hsp101為植物獲得性耐熱性的重要蛋白質..........................................14 1.植物Hsp101的特性........................................................................................14 2.Hsp101對植物重要性的證據.........................................................................16 三、HSP101具有轉譯活化子的特性...............................................................17 菸草鑲嵌病毒Ω 序列為轉譯增強子...............................................................17 四、葉綠體中Clp蛋白質的分佈.....................................................................19 五、研究目的.....................................................................................................23 1.利用Ω序列大量提高HSP101表現量...........................................................23 2.利用細胞核轉殖法在葉綠體中大量表現HSP101........................................23 第三章、材料與方法.........................................................................................25 1.實驗材料..........................................................................................................25 2.實驗方法..........................................................................................................25 2.1.植物基因轉殖載體的構築.......................................................................25 2.1.1利用Ω序列大量提高HSP101表現量.............................................25 2.1.2利用細胞核轉殖法在葉綠體中大量表現HSP101...........................27 2.2.構築表現載體所使用的方法....................................................................30 2.3.菸草基因轉殖............................................................................................39 2.4.轉殖植株篩選............................................................................................41 2.5.HSP101蛋白質表現量的分析..................................................................44 2.6.轉殖植株基因體的分析............................................................................48 2.7.獲得同質純系的轉殖植株........................................................................52 2.8.植株耐熱測試............................................................................................53 第四章、實驗結果..............................................................................................54 1. 獲得持續大量表現水稻HSP101的菸草轉殖植株......................................54 2. 以GUS當報告基因篩選轉殖植株...............................................................56 3. 南方墨點分析法結果.....................................................................................57 4. 菸草轉殖植株耐熱測試結果.........................................................................57 第五章、討論......................................................................................................60 ㄧ、探討在葉綠體中表現HSP101蛋白質的可能性.......................................60 二、在Oshsp101的C端接上Histag並無法被偵測出來................................61 三、Ω序列中前三個核苷酸的差異並不影響其功能.......................................62 四、轉殖植株可能有基因靜默之現象...............................................................62 五、耐熱測試改進方法.......................................................................................63 第六章、參考文獻...............................................................................................64 附錄一、以葉綠體基因轉殖法在葉綠體中大量表現HSP101.........................99 附錄二、藥品與溶液配方.................................................................................106 圖目錄 圖1、pHSP101質體結構圖................................................................................70 圖2、pΩH101與pCΩH101轉殖載體示意圖............ ....................................71 圖3、pTPH101(-)與pCTPH101(-)轉殖載體示意圖..........................................72 圖4、pTPH101(+)與pCTPH101(+)轉殖載體示意圖.........................................73 圖5、pΩTPH101與pCΩTPH101轉殖載體示意圖.........................................74 圖6、以PCR檢測pCΩH101菸草轉殖植株的基因體中是否含有Oshsp101基因.............................................................................................................................75 圖7、以PCR檢測pCTPH101(-)菸草轉殖植株的基因體中是否含有Oshsp101基因.............................................................................................................................76 圖8、以PCR檢測pCTPH101(-)菸草轉殖植株的基因體中是否含有Oshsp101基因..............................................................................................................................77 圖9、以PCR檢測pCTPH101(-)菸草轉殖植株的基因體中是否含有Oshsp101基因...............................................................................................................................78 圖10、以PCR檢測pCTPH101(+)菸草轉殖植株的基因體中是否含有Oshsp101基因...........................................................................................................................79 圖11、以PCR檢測pCΩTPH101菸草轉殖植株的基因體中是否含有Oshsp101基因...........................................................................................................................80 圖12、pCΩH101轉殖植株GUS組織染色結果..................................................81 圖13、pCΩTPH101轉殖植株GUS組織染色結果.............................................82 圖14、以西方墨點法分析pCΩH101轉殖菸草中OsHSP101的表現量...............................................................................................................................83 圖15、以西方墨點法分析pCTPH101(-)轉殖菸草中OsHSP101的表現量...............................................................................................................................84 圖16、以西方墨點法分析pCTPH101(+)轉殖菸草中OsHSP101的表現量...............................................................................................................................85 圖17、以西方墨點法分析pCΩTPH101轉殖菸草中OsHSP101的表現量...............................................................................................................................86 圖18、利用PCR合成DIG標定之Oshsp101ag探針..........................................87 圖19、以南方墨點法確定菸草轉殖植株之基因體中Oshsp101的存在................................................................................................................................88 圖20、pCΩH101轉殖植株3-4於52.3℃之下處理30分鐘之耐熱測試結果................................................................................................................................89 圖21、pCΩH101轉殖植株6-1於52.3℃之下處理30分鐘之耐熱測試結果................................................................................................................................90 圖22、pCTPH101(+)轉殖植株3-7於52.3℃之下處理30分鐘之耐熱測試結果................................................................................................................................91 圖23、pCTPH101(+)轉殖植株6-2於52.3℃之下處理30分鐘之耐熱測試結果................................................................................................................................92 圖24、pCΩTPH101轉殖植株1-5於52.3℃之下處理30分鐘之耐熱測試結果................................................................................................................................93 圖25、pCΩTPH101轉殖植株10-1於50℃之下處理40分鐘之耐熱測試結果................................................................................................................................94 圖26、以Anti-Histag的兔子抗體偵測pCTPH101(+)轉殖植株中OsHSP101表現量................................................................................................................................95 表目錄 表一、植物中五種主要與非生物性迫害因子相關的Hsps/molecular chaperones 以及其次族群.................................................................................................................96 表二、利用基因轉殖或分子遺傳方法對植物耐熱性的研究.................................97 表三、阿拉伯芥基因體中與Hsp100具有高度相似性的基因...............................97 表四、本論文所使用的引子......................................................................................98

    呂俊賢 (2004) 植物熱休克蛋白質HSP101的應用性研究. 國立成功大學生物科技研究所碩士論文
    Adam Z, Adamska I, Nakabayashi K, Ostersetzer O, Haussuhl K, Manuell A, Zheng B, Vallon O, Rodermel SR, Shinozaki K, Clarke AK (2001) Chloroplast and mitochondrial proteases in Arabidopsis thaliana: a proposed nomenclature. Plant Physiol 125: 1912-1918
    Agarwal M, Katiyar-Agarwal S, Sahi C, Gallie DR, Grover A (2001) Arabidopsis thaliana Hsp100 proteins: kith and kin. Cell Stress Chaperones 6: 219-224
    Agarwal M, Sahi C, Katiyar-Agarwal S, Agarwal S, Young T, Gallie DR, Sharma VM, Ganesan K, Grover A (2003) Molecular characterization of rice hsp101: complementation of yeast hsp104 mutation by disaggregation of protein granules and differential expression in indica and japonica rice types. Plant Mol Biol 51: 543-553
    Akita M, Nielsen E, Keegstra K (1997) Identification of protein transport complexes in the chloroplastic envelope membranes via chemical cross-linking. J Cell Biol 136: 983-994
    Banzet N, Richaud C, Deveaux Y, Kazmaier M, Gagnon J, Triantaphylides C (1998) Accumulation of small heat shock proteins, including mitochondrial HSP22,induced by oxidative stress and adaptive response in tomato cells. Plant J. 13: 519-527
    Behl RK, Heise KP, Moawad AM (1996) High temperature tolerance in relation to changes in lipids in mutant wheat. Tropenlandwirt 97: 131-135
    Bock R (2001) Transgenic plastids in basic research and plant biotechnology. J Mol Biol 312: 425-438
    Boston RS, Viitananen PV, Vierling E (1996) Molecular chaperones and protein folding in plants. Plant Mol Biol 32: 191-222
    Campbell JL, Klueva NY, Zheng HG, Nieto-Sotelo J, Ho TD, Nguyen HT (2001) Cloning of new members of heat shock protein HSP101 gene family in wheat (Triticum aestivum (L.) Moench) inducible by heat, dehydration, and ABA(1). Biochim Biophys Acta 1517: 270-277
    Chen DH, Ronald, P.C. (1999) A rapid DNA minipreparation method suitable for AFLP and other PCR applications. Plant Mol Biol Reporter 17: 53-57
    Clarke SM, Mur LA, Wood JE, Scott IM (2004) Salicylic acid dependent signaling promotes basal thermotolerance but is not essential for acquired thermotolerance in Arabidopsis thaliana. Plant J 38: 432-447
    Constan D, Froehlich JE, Rangarajan S, Keegstra K (2004) A stromal Hsp100 protein is required for normal chloroplast development and function in Arabidopsis. Plant Physiol 136: 3605-3615
    Cronje MJ, Bornman L (1999) Salicyclic acid influences Hsp70/Hsc70 expression in Lycopersicon esculentum: dose- and time-dependent induction or potentiation. Biochem. Biophys. Res. Commun. 265: 422-427
    Derre I, Rapoport G, Devine K, Rose M, Msadek T (1999) ClpE, a novel type of HSP100 ATPase, is part of the CtsR heat shock regulon of Bacillus subtilis. Mol Microbiol 32: 581-593
    Dinkova TD, Zepeda H, Martinez-Salas E, Martinez LM, Nieto-Sotelo J, de Jimenez ES (2005) Cap-independent translation of maize Hsp101. Plant J 41: 722-731
    Elliott RC, Pedersen TJ, Fristensky B, White MJ, Dickey LF, Thompson WF (1989) Characterization of a single copy gene encoding ferredoxin I from pea. Plant Cell 1: 681-690
    Gallie DR (2002) The 5'-leader of tobacco mosaic virus promotes translation through enhanced recruitment of eIF4F. Nucleic Acids Res 30: 3401-3411
    Gallie DR, Caldwell C, Pitto L (1995) Heat shock disrupts cap and poly(A) tail function during translation and increases mRNA stability of introduced reporter mRNA. Plant Physiol 108: 1703-1713
    Gallie DR, Fortner D, Peng J, Puthoff D (2002) ATP-dependent hexameric assembly of the heat shock protein Hsp101 involves multiple interaction domains and a functional C-proximal nucleotide-binding domain. J Biol Chem 277: 39617-39626
    Gallie DR, Sleat DE, Watts JW, Turner PC, Wilson TM (1987) A comparison of eukaryotic viral 5'-leader sequences as enhancers of mRNA expression in vivo. Nucleic Acids Res 15: 8693-8711
    Gallie DR, Walbot V (1992) Identification of the motifs within the tobacco mosaic virus 5'-leader responsible for enhancing translation. Nucleic Acids Res 20: 4631-4638
    Glover JR, Lindquist S (1998) Hsp104, Hsp70, and Hsp40: a novel chaperone system that rescues previously aggregated proteins. Cell 94: 73-82
    Gong M, Chen SN, Song YQ, Li ZG (1997) Effect of calcium and calmodulin on intrinsic heat tolerance in relation to antioxidant systems in maize seedlings. Aust. J. Plant Physiol. 24: 371-379
    Gurley WB (2000) HSP101: a key component for the acquisition of thermotolerance in plants. Plant Cell 12: 457-460
    Herrmann JM, Neupert W (2000) Protein transport into mitochondria. Curr Opin Microbiol 3: 210-214
    Hong SW, Lee U, Vierling E (2003) Arabidopsis hot mutants define multiple functions required for acclimation to high temperatures. Plant Physiol 132: 757-767
    Hong SW, Vierling E (2000) Mutants of Arabidopsis thaliana defective in the acquisition of tolerance to high temperature stress. Proc Natl Acad Sci U S A 97: 4392-4397
    Jagtap V, Bhargava S, Streb P, Feierabend J (1998) Comparative effect of water, heat and light stresses on photosynthetic reactions in Sorghum bicolor (L.) Moench. J. Exp. Bot. 49: 1715-1721
    Katiyar-Agarwal S, Agarwal M, Grover A (2003) Heat-tolerant basmati rice engineered by over-expression of hsp101. Plant Mol Biol 51: 677-686
    Kim BH, Schoffl F (2002) Interaction between Arabidopsis heat shock transcription factor 1 and 70 kDa heat shock proteins. J Exp Bot 53: 371-375
    Kouranov A, Chen X, Fuks B, Schnell DJ (1998) Tic20 and Tic22 are new components of the protein import apparatus at the chloroplast inner envelope membrane. J Cell Biol 143: 991-1002
    Krishna P, Gloor G (2001) The Hsp90 family of proteins in Arabidopsis thaliana. Cell Stress Chaperones 6: 238-246
    Larkindale J, Hall JD, Knight MR, Vierling E (2005) Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance. Plant Physiol 138: 882-897
    Larkindale J, Knight MR (2002) Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene, and salicylic acid. Plant Physiol 128: 682-695
    Lee U, Wie C, Escobar M, Williams B, Hong SW, Vierling E (2005) Genetic Analysis Reveals Domain Interactions of Arabidopsis Hsp100/ClpB and Cooperation with the Small Heat Shock Protein Chaperone System. Plant Cell 17: 559-571
    Levitt J (1980) Responses of Plants to Environmental Stress. Chilling, Freezing, and High Temperature Stresses.(Orlando, FL: Academic Press). I
    Ling J, Wells DR, Tanguay RL, Dickey LF, Thompson WF, Gallie DR (2000) Heat shock protein HSP101 binds to the Fed-1 internal light regulator y element and mediates its high translational activity. Plant Cell 12: 1213-1227
    Lutz Nover KB, Pascal Doring, Shravan Kumar Mishra, Arnab Ganguli, and Klaus-Dieter Scharf (2001) Arabidopsis and the Hsf world: how many heat stress transcription factors do we need? Cell Stress Chaperones 6: 177-189
    Maestri E, Klueva N, Perrotta C, Gulli M, Nguyen HT, Marmiroli N (2002) Molecular genetics of heat tolerance and heat shock proteins in cereals. Plant Mol Biol 48: 667-681
    Malik MK, Slovin JP, Hwang CH, Zimmerman JL (1999) Modified expression of a carrot small heat shock protein gene, hsp17. 7, results in increased or decreased thermotolerancedouble dagger. Plant J 20: 89-99
    Milioni D, Hatzopoulos P (1997) Genomic organization of hsp90 gene family in Arabidopsis. Plant Mol Biol 35: 955-961
    Mishra SK, Tripp J, Winkelhaus S, Tschiersch B, Theres K, Nover L, Scharf KD (2002) In the complex family of heat stress transcription factors, HsfA1 has a unique role as master regulator of thermotolerance in tomato. Genes Dev 16: 1555-1567
    Morimoto RI, Tissieres A, Georgopoulos C (1994) The Biology of Heat Shock Proteins and Molecular Chaperones. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
    Murakami Y, Tsuyama M, Kobayashi Y, JKodama h, Iba K (2000) Trienoic fatty acids and plant tolerance of high temperature. Science 287: 476-479
    Nakabayashi K, Ito M, Kiyosue T, Shinozaki K, Watanabe A (1999) Identification of clp genes expressed in senescing Arabidopsis leaves. Plant Cell Physiol 40: 504-514
    Nieto-Sotelo J, Martinez LM, Ponce G, Cassab GI, Alagon A, Meeley RB, Ribaut JM, Yang R (2002) Maize HSP101 plays important roles in both induced and basal thermotolerance and primary root growth. Plant Cell 14: 1621-1633
    Osteryoung KW, Sundberg H, Vierling E (1993) Poly(A) tail length of a heat shock protein RNA is increased by severe heat stress, but intron splicing is unaffected. Mol. Gen. Genet. 239: 323-333
    Panchuk, II, Volkov RA, Schoffl F (2002) Heat stress- and heat shock transcription factor-dependent expression and activity of ascorbate peroxidase in Arabidopsis. Plant Physiol 129: 838-853
    Pareek A, Singla SL, Grover A (1998) Proteins alterations associated with salinity, desiccation, high and low temperature stresses and abscisic acid application in seedlings of Pusa 169, a high-yielding rice(Oryza sativa L.) cultivar. Curr. Sci. 75: 1023-1035
    Petracek ME, Dickey LF, Nguyen TT, Gatz C, Sowinski DA, Allen GC, Thompson WF (1998) Ferredoxin-1 mRNA is destabilized by changes in photosynthetic electron transport. Proc Natl Acad Sci U S A 95: 9009-9013
    Queitsch C, Hong SW, Vierling E, Lindquist S (2000) Heat shock protein 101 plays a crucial role in thermotolerance in Arabidopsis. Plant Cell 12: 479-492
    Radin JW, Lu Z, Percy RG, Zeiger E (1994) Genetic variability for stomatal conductance in Pima cotton and its relation to improvements of heat adaptation. Proc Natl Acad Sci U S A 91: 7217-7221
    Rapoport TA, Matlack KE, Plath K, Misselwitz B, Staeck O (1999) Posttranslational protein translocation across the membrane of the endoplasmic reticulum. Biol Chem 380: 1143-1150
    Sairam RK, Srivastava GC, Saxena DC (2000) Increased antioxidant activity under elevated temperatures: a mechanism of heat stress tolerance in wheat genotypes. Biol. Plant. 43: 245-251
    Schirmer EC, Glover JR, Singer MA, Lindquist S (1996) HSP100/Clp proteins: a common mechanism explains diverse functions. Trends Biochem Sci 21: 289-296
    Schirmer EC, Lindquist S, Vierling E (1994) An Arabidopsis heat shock protein complements a thermotolerance defect in yeast. Plant Cell 6: 1899-1909
    Shanklin J, DeWitt ND, Flanagan JM (1995) The stroma of higher plant plastids contain ClpP and ClpC, functional homologs of Escherichia coli ClpP and ClpA: an archetypal two-component ATP-dependent protease. Plant Cell 7: 1713-1722
    Sjogren LL, MacDonald TM, Sutinen S, Clarke AK (2004) Inactivation of the clpC1 gene encoding a chloroplast Hsp100 molecular chaperone causes growth retardation, leaf chlorosis, lower photosynthetic activity, and a specific reduction in photosystem content. Plant Physiol 136: 4114-4126
    Stone P (2001) The effects of heat stress on cereal yield and quality. In: A.S. Basra(Ed.) Crop Responses and Analysis to Temperature Stress,. Food Products Press, Binghamton, NY, pp.243-291
    Storozhenko S, De Pauw P, Van Montagu M, Inze D, Kushnir S (1998) The heat-shock element is a functional component of the Arabidopsis APX1 gene promoter. Plant Physiol 118: 1005-1014
    Sung DY, Guy CL (2003) Physiological and molecular assessment of altered expression of Hsc70-1 in Arabidopsis. Evidence for pleiotropic consequences. Plant Physiol 132: 979-987
    Sung DY, Kaplan F, Lee KJ, Guy CL (2003) Acquired tolerance to temperature extremes. Trends Plant Sci 8: 179-187
    Vettakkorumakankav NN, Falk D, Saxena P, Fletcher RA (1999) A crucial role for gibberellins in stress protection of plants. Plant Cell Physiol. 40: 542-548
    Visioli G, Maestri E, Marmiroli N (1997) Differential display-mediated isolation of a genomic sequence for a putative mitochondrial LMW HSP specifically expressed in condition of induced thermotolerance in Arabidopsis thaliana (L) Heynh. Plant Mol. Biol. 34: 517-527
    Walker JE, Saraste M, Runswick MJ, Gay NJ (1982) Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. Embo J 1: 945-951
    Wang W, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9: 244-252
    Wells DR, Tanguay RL, Le H, Gallie DR (1998) HSP101 functions as a specific translational regulatory protein whose activity is regulated by nutrient status. Genes Dev 12: 3236-3251
    Yabe N, Takahashi T, Komeda Y (1994) Analysis of tissue-specific expression of Arabidopsis thaliana HSP90-family gene HSP81. Plant Cell Physiol 35: 1207-1219
    Zhang C, Guy CL (2005) Co-immunoprecipitation of Hsp101 with cytosolic Hsc70. Plant Physiol Biochem 43: 13-18
    Zheng B, Halperin T, Hruskova-Heidingsfeldova O, Adam Z, Clarke AK (2002) Characterization of Chloroplast Clp proteins in Arabidopsis: Localization, tissue specificity and stress responses. Physiol Plant 114: 92-101

    下載圖示 校內:2007-09-07公開
    校外:2007-09-07公開
    QR CODE