簡易檢索 / 詳目顯示

研究生: 魏柏丞
Wei, Bo-Cheng
論文名稱: 利用滑移趨勢評估二氧化碳地質封存引發斷層洩漏風險之數值模擬研究
Numerical Simulation Study of Fault Leakage Risk in CO2 Geological Storage Based on Slip Tendency
指導教授: 謝秉志
Hsieh, Being-Zih
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 80
中文關鍵詞: 二氧化碳封存滑移趨勢斷層洩漏風險壓力分析
外文關鍵詞: CCS, Slip Tendency, Fault leakage risk, Pressure Analysis
相關次數: 點閱:52下載:15
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目前溫室效應日趨嚴重,溫室效應造成許多極端的氣候問題,其主要原因為溫室氣體的排放,在溫室氣體中,主要的氣體是二氧化碳,因此國際間皆致力於降低碳排放,其中,碳捕集及封存(CCS)為一重要技術,包含一系列的工程技術,最後將二氧化碳注入適當的地底構造。然而,將二氧化碳注入至地下地層時,可能會產生許多風險,因注入二氧化碳時所產生的注入壓力會使地層孔隙壓力上升,且壓力傳遞的範圍比二氧化碳傳遞的範圍大上許多,若壓力影響範圍內含有斷層構造,即有可能影響斷層之應力狀態並衍生岩石力學相關風險。
    注入行為可能引發斷層再活動,而斷層再活動為一系列的行為,包含裂隙開放及誘發地震,本研究主要探討斷層受力後裂隙開放並產生洩漏風險之行為,利用斷層面上作用的切向應力、法向有效應力及斷層摩擦係數計算斷層的滑移趨勢,並以滑移趨勢作為斷層邊界改變與否的標準,當斷層邊界改變時,其訊號會反饋於井底壓力,此時,可利用注入井井壓暫態分析評估斷層邊界之變化,並修正注入井的工程設計,以避免二氧化碳沿斷層洩漏之風險,並進行井注入設計及地層構造之情境分析。

    Injection of carbon dioxide into underground formations can pose various risks. The injection process generates injection pressure that increases the pore pressure in the geological formation. The range of pressure propagation is often much larger than the range of carbon dioxide diffusion. If the pressure-affected area includes fault structures, it could potentially impact the stress state of the fault and give rise to risks related to rock mechanics.
    The injection process could trigger fault reactivation, leading to a series of behaviors including fissure opening and induced earthquakes. This study primarily investigates the behavior of fault reopening and the associated leakage risk after fault stress. The slip tendency of the fault is calculated using the tangential stress, effective normal stress, and fault friction coefficient acting on the fault plane. The slip tendency is used as an indicator of whether there is a change in the fault boundary. When there is a change in the fault boundary, the signal is reflected in the wellbore pressure. This enables the evaluation of changes in the fault boundary through transient analysis of wellbore pressure during injection, allowing for adjustments to the injection well engineering design to mitigate the risk of carbon dioxide leakage along the fault. This approach involves well injection design and scenario analysis of subsurface structures.

    摘要.................................................................................................................. i Extended Abstract .........................................................................................ii 目錄............................................................................................................... x 圖目錄..........................................................................................................xii 表目錄.........................................................................................................xv 符號說明................................................................................................... xvi 第壹章 緒論.................................................................................................. 1 1.1前言..................................................................................................... 1 1.2研究動機及目的................................................................................. 3 第貳章 文獻回顧.......................................................................................... 4 第參章 研究方法........................................................................................ 14 3.1多相態流體流動數值模擬............................................................... 15 3.1.1流動方程式(Flow Equations)................................................ 15 3.1.2相態平衡方程式(Phase-Equilibrium Equations) .................. 16 3.1.3飽和度方程式(Saturation Equations).................................... 17 3.1.4莫爾體積相容方程式(Mole or Volume Consistency Equations)........................................................................................ 17 3.1.5解耦閃存計算法(Decoupled Flash-Calculation Approach).. 17 3.2 二氧化碳封存機制數值模擬........................................................... 18 3.3岩石力學數值模擬........................................................................... 22 3.4流體流動及岩石力學耦合計算....................................................... 24 3.4壓力暫態分析................................................................................... 26 第肆章 研究流程........................................................................................ 31 4.1數值模型建立流程........................................................................... 32 4.2基礎案例設計................................................................................... 33 4.2.1三維靜地模型建立................................................................ 34 4.2.2流體流動模式........................................................................ 36 4.2.3岩石力學模式........................................................................ 37 4.3井底流體壓力暫態分析................................................................... 39 第伍章 結果與討論.................................................................................... 41 5.1基礎案例分析................................................................................... 41 5.3不同注入量之情境案例分析........................................................... 65 第陸章 結論與建議.................................................................................... 72 6.1結論...................................................................................................72 6.2建議...................................................................................................74 參考文獻.........................................................................................................75

    Acs, G., Doleschall, S., & Farkas, E. (1985). General purpose compositional model. Society of Petroleum Engineers Journal, 25(04), 543-553.
    Birkholzer, J., Zhou, Q., & Tsang, C. (2009). Large-scale impact of CO2 storage in deep saline aquifers: A sensitivity study on pressure response in stratified systems. International Journal of Greenhouse Gas Control, 3(2), 181-194. doi:10.1016/j.ijggc.2008.08.002
    Birkholzer, J. T., Oldenburg, C. M., & Zhou, Q. (2015). CO2 migration and pressure evolution in deep saline aquifers. International Journal of Greenhouse Gas Control, 40, 203-220. doi:10.1016/j.ijggc.2015.03.022
    Bourdet, D., Whittle, T., Douglas, A., & Pirard, Y. (1983). A new set of type curves simplifies well test analysis. World oil, 196(6), 95-106.
    Byerlee, J. (1978). Friction of rocks. Rock friction and earthquake prediction, 615-626.
    Collettini, C., & Trippetta, F. (2007). A slip tendency analysis to test mechanical and structural control on aftershock rupture planes. Earth and Planetary Science Letters, 255(3-4), 402-413. doi:10.1016/j.epsl.2007.01.001
    Collins, D., Nghiem, L., Li, Y.-K., & Grabonstotter, J. (1992). An efficient approach to adaptive-implicit compositional simulation with an equation of state. SPE reservoir engineering, 7(02), 259-264.
    Ennis-King, J., & Paterson, L. (2005). Role of convective mixing in the long-term storage of carbon dioxide in deep saline formations. Spe Journal, 10(03), 349-356.
    Gallagher, P. W. (2010). Corn ethanol growth in the USA without adverse foreign land-use change: defining limits and devising policies. Biofuels, Bioproducts and Biorefining, 4(3), 296-309. doi:10.1002/bbb.214
    Grude, S., Landrø, M., & Dvorkin, J. (2014). Pressure effects caused by CO2 injection in the Tubåen Fm., the Snøhvit field. International Journal of Greenhouse Gas Control, 27, 178-187. doi:10.1016/j.ijggc.2014.05.013
    Gunter, W. D., Bachu, S., & Benson, S. (2004). The role of hydrogeological and geochemical trapping in sedimentary basins for secure geological storage of carbon dioxide. Geological Society, London, Special Publications, 233(1), 129-145.
    Henry, W. (1803). III. Experiments on the quantity of gases absorbed bywater, at different temperatures, and under different pressures. Philosophical Transactions of the Royal Society of London(93), 29-274.
    Hosseini, S. A. (2014). Time Lapse Compressibility Monitoring for Detection of CO2 Leakage in Brine Aquifers. Energy Procedia, 63, 4459-4463. doi:10.1016/j.egypro.2014.11.481
    Hosseini, S. A. (2019). Fault leakage detection and characterization using pressure transient analysis. Journal of Petroleum Science and Engineering, 176, 880-886. doi:10.1016/j.petrol.2019.01.099
    Hsieh, B.-Z., Nghiem, L., Shen, C.-H., & Lin, Z.-S. (2013). Effects of complex sandstone–shale sequences of a storage formation on the risk of CO2 leakage: Case study from Taiwan. International Journal of Greenhouse Gas Control, 17, 376-387.
    Jing, L. (2003). A review of techniques, advances and outstanding issues in numerical modelling for rock mechanics and rock engineering. International Journal of Rock Mechanics and Mining Sciences, 40(3), 283-353. doi:10.1016/s1365-1609(03)00013-3
    Johnson, K., Lopez, S., & Engineer, E. E. (2003). The nuts and bolts of falloff testing. Engineer, 214, 665-7198.
    Juanes, R., Spiteri, E. J., Orr, F. M., & Blunt, M. J. (2006). Impact of relative permeability hysteresis on geological CO2storage. Water Resources Research, 42(12). doi:10.1029/2005wr004806
    Jung, H., Singh, G., Espinoza, D. N., & Wheeler, M. F. (2018). Quantification of a maximum injection volume of CO2 to avert geomechanical perturbations using a compositional fluid flow reservoir simulator. Advances in Water Resources, 112, 160-169. doi:10.1016/j.advwatres.2017.12.003
    Kano, Y., Funatsu, T., Nakao, S., Kusunose, K., Ishido, T., Lei, X., & Tosha, T. (2014). Analysis of Changes in Stress State and Fault Stability Related to Planned CO2 Injection at the Tomakomai Offshore Site. Energy Procedia, 63, 2870-2878. doi:10.1016/j.egypro.2014.11.310
    Kazemifar, F. (2021). A review of technologies for carbon capture, sequestration, and utilization: Cost, capacity, and technology readiness. Greenhouse Gases: Science and Technology, 12(1), 200-230. doi:10.1002/ghg.2131
    Kim, G. W., Kim, T. H., Lee, J., & Lee, K. S. (2018). Coupled Geomechanical-Flow Assessment of CO2 Leakage through Heterogeneous Caprock during CCS. Advances in Civil Engineering, 2018, 1-13. doi:10.1155/2018/1474320
    Kumar, A., Ozah, R., Noh, M., Pope, G. A., Bryant, S., Sepehrnoori, K., & Lake, L. W. (2005). Reservoir simulation of CO2 storage in deep saline aquifers. Spe Journal, 10(03), 336-348.
    Land, C. S. (1968). Calculation of imbibition relative permeability for two-and three-phase flow from rock properties. Society of Petroleum Engineers Journal, 8(02), 149-156.
    Li, X., Li, Q., Bai, B., Wei, N., & Yuan, W. (2016). The geomechanics of Shenhua carbon dioxide capture and storage (CCS) demonstration project in Ordos Basin, China. Journal of Rock Mechanics and Geotechnical Engineering, 8(6), 948-966. doi:10.1016/j.jrmge.2016.07.002
    Lisle, R. J., & Srivastava, D. C. (2004). Test of the frictional reactivation theory for faults and validity of fault-slip analysis. Geology, 32(7). doi:10.1130/g20408.1
    Lokhorst, A., & Wildenborg, T. (2006). Introduction on CO2 Geological Storage - Classification of Storage Options. Oil & Gas Science and Technology, 60(3), 513-515. doi:10.2516/ogst:2005033
    Luu, K., Schoenball, M., Oldenburg, C. M., & Rutqvist, J. (2022). Coupled Hydromechanical Modeling of Induced Seismicity From CO2Injection in the Illinois Basin. Journal of Geophysical Research: Solid Earth, 127(5). doi:10.1029/2021jb023496
    MccorMick, M. (2012). Greenhouse Gas Accounting Framework for Carbon Capture and Storage Projects: Center For Climate and Energy Solutions Arlington, VA.
    Miyakawa, A., & Otsubo, M. (2015). Applicability of slip tendency for understanding long-term fault activity: a case study of active faults in northeastern Japan. Journal of JSCE, 3(1), 105-114.
    Morris, A., Ferrill, D. A., & Henderson, D. B. (1996). Slip-tendency analysis and fault reactivation. Geology, 24(3), 275-278.
    Mosaheb, M., & Zeidouni, M. (2017). Pressure Transient analysis for leaky well characterization and its identification from leaky fault. Paper presented at the SPE Health, Safety, Security, Environment, & Social Responsibility Conference-North America.
    Nghiem, L., Sammon, P., Grabenstetter, J., & Ohkuma, H. (2004). Modeling CO2 Storage in Aquifers with a Fully-Coupled Geochemical EOS Compositional Simulator. Paper presented at the All Days.
    Obi, E.-O. I., & Blunt, M. J. (2006). Streamline-based simulation of carbon dioxide storage in a North Sea aquifer. Water Resources Research, 42(3). doi:10.1029/2004wr003347
    Pan, P., Wu, Z., Feng, X., & Yan, F. (2016). Geomechanical modeling of CO 2 geological storage: A review. Journal of Rock Mechanics and Geotechnical Engineering, 8(6), 936-947. doi:10.1016/j.jrmge.2016.10.002
    Peng, D.-Y., & Robinson, D. B. (1976). A new two-constant equation of state. Industrial & Engineering Chemistry Fundamentals, 15(1), 59-64.
    Porter, R. T. J., Striolo, A., Mahgerefteh, H., & Faure Walker, J. (2018). Addressing the risks of induced seismicity in subsurface energy operations. WIREs Energy and Environment, 8(2). doi:10.1002/wene.324
    Röckel, L., Ahlers, S., Müller, B., Reiter, K., Heidbach, O., Henk, A., . . . Schilling, F. (2022). The analysis of slip tendency of major tectonic faults in Germany. Solid Earth, 13(6), 1087-1105. doi:10.5194/se-13-1087-2022
    Ren, J., & Guo, P. (2014). A New Mathematical Model for Pressure Transient Analysis in Stress-Sensitive Reservoirs. Mathematical Problems in Engineering, 2014, 1-14. doi:10.1155/2014/485028
    Rutqvist, J., Birkholzer, J., Cappa, F., & Tsang, C. F. (2007). Estimating maximum sustainable injection pressure during geological sequestration of CO2 using coupled fluid flow and geomechanical fault-slip analysis. Energy Conversion and Management, 48(6), 1798-1807. doi:10.1016/j.enconman.2007.01.021
    Shchipanov, A., Kollbotn, L., & Berenblyum, R. (2018). Fault leakage detection from pressure transient analysis. Paper presented at the Fifth CO2 Geological Storage Workshop.
    Shchipanov, A. A., Kollbotn, L., & Berenblyum, R. (2019). Characterization and monitoring of reservoir flow barriers from pressure transient analysis for CO2 injection in saline aquifers. International Journal of Greenhouse Gas Control, 91. doi:10.1016/j.ijggc.2019.102842
    Song, Y., Jun, S., Na, Y., Kim, K., Jang, Y., & Wang, J. (2023). Geomechanical challenges during geological CO2 storage: A review. Chemical Engineering Journal, 456. doi:10.1016/j.cej.2022.140968
    Streit, J. E., & Hillis, R. R. (2004). Estimating fault stability and sustainable fluid pressures for underground storage of CO2 in porous rock. Energy, 29(9-10), 1445-1456. doi:10.1016/j.energy.2004.03.078
    Taghipour, M., Ghafoori, M., Lashkaripour, G. R., Hafezi Moghaddas, N., & Molaghab, A. (2020). A Geomechanical Evaluation of Fault Reactivation Using Analytical Methods and Numerical Simulation. Rock Mechanics and Rock Engineering, 54(2), 695-719. doi:10.1007/s00603-020-02309-7
    Tarokh, A., Makhnenko, R. Y., Kim, K., Zhu, X., Popovics, J. S., Segvic, B., & Sweet, D. E. (2020). Influence of CO2 injection on the poromechanical response of Berea sandstone. International Journal of Greenhouse Gas Control, 95. doi:10.1016/j.ijggc.2020.102959
    Thibeau, S., Nghiem, L. X., & Ohkuma, H. (2007). A modeling study of the role of selected minerals in enhancing CO2 mineralization during CO2 aquifer storage. Paper presented at the SPE annual technical conference and exhibition.
    Thomas, G. W., & Thurnau, D. H. (1983). Reservoir simulation using an adaptive implicit method. Society of Petroleum Engineers Journal, 23(05), 759-768.
    Tran, D., Settari, A., & Nghiem, L. (2002). New iterative coupling between a reservoir simulator and a geomechanics module. Paper presented at the SPE/ISRM Rock Mechanics Conference.
    Vadacca, L., Rossi, D., Scotti, A., & Buttinelli, M. (2021). Slip Tendency Analysis, Fault Reactivation Potential and Induced Seismicity in the Val d'Agri Oilfield (Italy). Journal of Geophysical Research: Solid Earth, 126(1). doi:10.1029/2019jb019185
    Vilarrasa, V., Makhnenko, R., & Gheibi, S. (2016). Geomechanical analysis of the influence of CO 2 injection location on fault stability. Journal of Rock Mechanics and Geotechnical Engineering, 8(6), 805-818. doi:10.1016/j.jrmge.2016.06.006
    Watts, J. (1986). A compositional formulation of the pressure and saturation equations. SPE reservoir engineering, 1(03), 243-252.
    Yang, Z., Yehya, A., Iwalewa, T. M., & Rice, J. R. (2021). Effect of Permeability Evolution in Fault Damage Zones on Earthquake Recurrence. Journal of Geophysical Research: Solid Earth, 126(9). doi:10.1029/2021jb021787
    Yukutake, Y., Takeda, T., & Yoshida, A. (2015). The applicability of frictional reactivation theory to active faults in Japan based on slip tendency analysis. Earth and Planetary Science Letters, 411, 188-198. doi:10.1016/j.epsl.2014.12.005
    Zhou, Q., & Birkholzer, J. T. (2011). On scale and magnitude of pressure build-up induced by large-scale geologic storage of CO2. Greenhouse Gases: Science and Technology, 1(1), 11-20. doi:10.1002/ghg3.1
    Nghiem, L.X. and Li, Y.-K., "Phase-Equilibrium Calculations for Reservoir Engineering and Compositional Simulation", Second International Forum on Reservoir Simulation, Alpbach, Austria,September 4-8, 1989.
    Nghiem, L.X. and Li, Y.-K., "Phase-Equilibrium Calculations for Reservoir Engineering and Compositional Simulation", First International Forum on Reservoir Simulation, Alpbach, Austria, September 12-16, 1988.
    ISO 27914:2017,Carbon dioxide capture, transportation and geological storage —Geological storage,2017

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE