| 研究生: |
魏柏丞 Wei, Bo-Cheng |
|---|---|
| 論文名稱: |
利用滑移趨勢評估二氧化碳地質封存引發斷層洩漏風險之數值模擬研究 Numerical Simulation Study of Fault Leakage Risk in CO2 Geological Storage Based on Slip Tendency |
| 指導教授: |
謝秉志
Hsieh, Being-Zih |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 80 |
| 中文關鍵詞: | 二氧化碳封存 、滑移趨勢 、斷層洩漏風險 、壓力分析 |
| 外文關鍵詞: | CCS, Slip Tendency, Fault leakage risk, Pressure Analysis |
| 相關次數: | 點閱:52 下載:15 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
目前溫室效應日趨嚴重,溫室效應造成許多極端的氣候問題,其主要原因為溫室氣體的排放,在溫室氣體中,主要的氣體是二氧化碳,因此國際間皆致力於降低碳排放,其中,碳捕集及封存(CCS)為一重要技術,包含一系列的工程技術,最後將二氧化碳注入適當的地底構造。然而,將二氧化碳注入至地下地層時,可能會產生許多風險,因注入二氧化碳時所產生的注入壓力會使地層孔隙壓力上升,且壓力傳遞的範圍比二氧化碳傳遞的範圍大上許多,若壓力影響範圍內含有斷層構造,即有可能影響斷層之應力狀態並衍生岩石力學相關風險。
注入行為可能引發斷層再活動,而斷層再活動為一系列的行為,包含裂隙開放及誘發地震,本研究主要探討斷層受力後裂隙開放並產生洩漏風險之行為,利用斷層面上作用的切向應力、法向有效應力及斷層摩擦係數計算斷層的滑移趨勢,並以滑移趨勢作為斷層邊界改變與否的標準,當斷層邊界改變時,其訊號會反饋於井底壓力,此時,可利用注入井井壓暫態分析評估斷層邊界之變化,並修正注入井的工程設計,以避免二氧化碳沿斷層洩漏之風險,並進行井注入設計及地層構造之情境分析。
Injection of carbon dioxide into underground formations can pose various risks. The injection process generates injection pressure that increases the pore pressure in the geological formation. The range of pressure propagation is often much larger than the range of carbon dioxide diffusion. If the pressure-affected area includes fault structures, it could potentially impact the stress state of the fault and give rise to risks related to rock mechanics.
The injection process could trigger fault reactivation, leading to a series of behaviors including fissure opening and induced earthquakes. This study primarily investigates the behavior of fault reopening and the associated leakage risk after fault stress. The slip tendency of the fault is calculated using the tangential stress, effective normal stress, and fault friction coefficient acting on the fault plane. The slip tendency is used as an indicator of whether there is a change in the fault boundary. When there is a change in the fault boundary, the signal is reflected in the wellbore pressure. This enables the evaluation of changes in the fault boundary through transient analysis of wellbore pressure during injection, allowing for adjustments to the injection well engineering design to mitigate the risk of carbon dioxide leakage along the fault. This approach involves well injection design and scenario analysis of subsurface structures.
Acs, G., Doleschall, S., & Farkas, E. (1985). General purpose compositional model. Society of Petroleum Engineers Journal, 25(04), 543-553.
Birkholzer, J., Zhou, Q., & Tsang, C. (2009). Large-scale impact of CO2 storage in deep saline aquifers: A sensitivity study on pressure response in stratified systems. International Journal of Greenhouse Gas Control, 3(2), 181-194. doi:10.1016/j.ijggc.2008.08.002
Birkholzer, J. T., Oldenburg, C. M., & Zhou, Q. (2015). CO2 migration and pressure evolution in deep saline aquifers. International Journal of Greenhouse Gas Control, 40, 203-220. doi:10.1016/j.ijggc.2015.03.022
Bourdet, D., Whittle, T., Douglas, A., & Pirard, Y. (1983). A new set of type curves simplifies well test analysis. World oil, 196(6), 95-106.
Byerlee, J. (1978). Friction of rocks. Rock friction and earthquake prediction, 615-626.
Collettini, C., & Trippetta, F. (2007). A slip tendency analysis to test mechanical and structural control on aftershock rupture planes. Earth and Planetary Science Letters, 255(3-4), 402-413. doi:10.1016/j.epsl.2007.01.001
Collins, D., Nghiem, L., Li, Y.-K., & Grabonstotter, J. (1992). An efficient approach to adaptive-implicit compositional simulation with an equation of state. SPE reservoir engineering, 7(02), 259-264.
Ennis-King, J., & Paterson, L. (2005). Role of convective mixing in the long-term storage of carbon dioxide in deep saline formations. Spe Journal, 10(03), 349-356.
Gallagher, P. W. (2010). Corn ethanol growth in the USA without adverse foreign land-use change: defining limits and devising policies. Biofuels, Bioproducts and Biorefining, 4(3), 296-309. doi:10.1002/bbb.214
Grude, S., Landrø, M., & Dvorkin, J. (2014). Pressure effects caused by CO2 injection in the Tubåen Fm., the Snøhvit field. International Journal of Greenhouse Gas Control, 27, 178-187. doi:10.1016/j.ijggc.2014.05.013
Gunter, W. D., Bachu, S., & Benson, S. (2004). The role of hydrogeological and geochemical trapping in sedimentary basins for secure geological storage of carbon dioxide. Geological Society, London, Special Publications, 233(1), 129-145.
Henry, W. (1803). III. Experiments on the quantity of gases absorbed bywater, at different temperatures, and under different pressures. Philosophical Transactions of the Royal Society of London(93), 29-274.
Hosseini, S. A. (2014). Time Lapse Compressibility Monitoring for Detection of CO2 Leakage in Brine Aquifers. Energy Procedia, 63, 4459-4463. doi:10.1016/j.egypro.2014.11.481
Hosseini, S. A. (2019). Fault leakage detection and characterization using pressure transient analysis. Journal of Petroleum Science and Engineering, 176, 880-886. doi:10.1016/j.petrol.2019.01.099
Hsieh, B.-Z., Nghiem, L., Shen, C.-H., & Lin, Z.-S. (2013). Effects of complex sandstone–shale sequences of a storage formation on the risk of CO2 leakage: Case study from Taiwan. International Journal of Greenhouse Gas Control, 17, 376-387.
Jing, L. (2003). A review of techniques, advances and outstanding issues in numerical modelling for rock mechanics and rock engineering. International Journal of Rock Mechanics and Mining Sciences, 40(3), 283-353. doi:10.1016/s1365-1609(03)00013-3
Johnson, K., Lopez, S., & Engineer, E. E. (2003). The nuts and bolts of falloff testing. Engineer, 214, 665-7198.
Juanes, R., Spiteri, E. J., Orr, F. M., & Blunt, M. J. (2006). Impact of relative permeability hysteresis on geological CO2storage. Water Resources Research, 42(12). doi:10.1029/2005wr004806
Jung, H., Singh, G., Espinoza, D. N., & Wheeler, M. F. (2018). Quantification of a maximum injection volume of CO2 to avert geomechanical perturbations using a compositional fluid flow reservoir simulator. Advances in Water Resources, 112, 160-169. doi:10.1016/j.advwatres.2017.12.003
Kano, Y., Funatsu, T., Nakao, S., Kusunose, K., Ishido, T., Lei, X., & Tosha, T. (2014). Analysis of Changes in Stress State and Fault Stability Related to Planned CO2 Injection at the Tomakomai Offshore Site. Energy Procedia, 63, 2870-2878. doi:10.1016/j.egypro.2014.11.310
Kazemifar, F. (2021). A review of technologies for carbon capture, sequestration, and utilization: Cost, capacity, and technology readiness. Greenhouse Gases: Science and Technology, 12(1), 200-230. doi:10.1002/ghg.2131
Kim, G. W., Kim, T. H., Lee, J., & Lee, K. S. (2018). Coupled Geomechanical-Flow Assessment of CO2 Leakage through Heterogeneous Caprock during CCS. Advances in Civil Engineering, 2018, 1-13. doi:10.1155/2018/1474320
Kumar, A., Ozah, R., Noh, M., Pope, G. A., Bryant, S., Sepehrnoori, K., & Lake, L. W. (2005). Reservoir simulation of CO2 storage in deep saline aquifers. Spe Journal, 10(03), 336-348.
Land, C. S. (1968). Calculation of imbibition relative permeability for two-and three-phase flow from rock properties. Society of Petroleum Engineers Journal, 8(02), 149-156.
Li, X., Li, Q., Bai, B., Wei, N., & Yuan, W. (2016). The geomechanics of Shenhua carbon dioxide capture and storage (CCS) demonstration project in Ordos Basin, China. Journal of Rock Mechanics and Geotechnical Engineering, 8(6), 948-966. doi:10.1016/j.jrmge.2016.07.002
Lisle, R. J., & Srivastava, D. C. (2004). Test of the frictional reactivation theory for faults and validity of fault-slip analysis. Geology, 32(7). doi:10.1130/g20408.1
Lokhorst, A., & Wildenborg, T. (2006). Introduction on CO2 Geological Storage - Classification of Storage Options. Oil & Gas Science and Technology, 60(3), 513-515. doi:10.2516/ogst:2005033
Luu, K., Schoenball, M., Oldenburg, C. M., & Rutqvist, J. (2022). Coupled Hydromechanical Modeling of Induced Seismicity From CO2Injection in the Illinois Basin. Journal of Geophysical Research: Solid Earth, 127(5). doi:10.1029/2021jb023496
MccorMick, M. (2012). Greenhouse Gas Accounting Framework for Carbon Capture and Storage Projects: Center For Climate and Energy Solutions Arlington, VA.
Miyakawa, A., & Otsubo, M. (2015). Applicability of slip tendency for understanding long-term fault activity: a case study of active faults in northeastern Japan. Journal of JSCE, 3(1), 105-114.
Morris, A., Ferrill, D. A., & Henderson, D. B. (1996). Slip-tendency analysis and fault reactivation. Geology, 24(3), 275-278.
Mosaheb, M., & Zeidouni, M. (2017). Pressure Transient analysis for leaky well characterization and its identification from leaky fault. Paper presented at the SPE Health, Safety, Security, Environment, & Social Responsibility Conference-North America.
Nghiem, L., Sammon, P., Grabenstetter, J., & Ohkuma, H. (2004). Modeling CO2 Storage in Aquifers with a Fully-Coupled Geochemical EOS Compositional Simulator. Paper presented at the All Days.
Obi, E.-O. I., & Blunt, M. J. (2006). Streamline-based simulation of carbon dioxide storage in a North Sea aquifer. Water Resources Research, 42(3). doi:10.1029/2004wr003347
Pan, P., Wu, Z., Feng, X., & Yan, F. (2016). Geomechanical modeling of CO 2 geological storage: A review. Journal of Rock Mechanics and Geotechnical Engineering, 8(6), 936-947. doi:10.1016/j.jrmge.2016.10.002
Peng, D.-Y., & Robinson, D. B. (1976). A new two-constant equation of state. Industrial & Engineering Chemistry Fundamentals, 15(1), 59-64.
Porter, R. T. J., Striolo, A., Mahgerefteh, H., & Faure Walker, J. (2018). Addressing the risks of induced seismicity in subsurface energy operations. WIREs Energy and Environment, 8(2). doi:10.1002/wene.324
Röckel, L., Ahlers, S., Müller, B., Reiter, K., Heidbach, O., Henk, A., . . . Schilling, F. (2022). The analysis of slip tendency of major tectonic faults in Germany. Solid Earth, 13(6), 1087-1105. doi:10.5194/se-13-1087-2022
Ren, J., & Guo, P. (2014). A New Mathematical Model for Pressure Transient Analysis in Stress-Sensitive Reservoirs. Mathematical Problems in Engineering, 2014, 1-14. doi:10.1155/2014/485028
Rutqvist, J., Birkholzer, J., Cappa, F., & Tsang, C. F. (2007). Estimating maximum sustainable injection pressure during geological sequestration of CO2 using coupled fluid flow and geomechanical fault-slip analysis. Energy Conversion and Management, 48(6), 1798-1807. doi:10.1016/j.enconman.2007.01.021
Shchipanov, A., Kollbotn, L., & Berenblyum, R. (2018). Fault leakage detection from pressure transient analysis. Paper presented at the Fifth CO2 Geological Storage Workshop.
Shchipanov, A. A., Kollbotn, L., & Berenblyum, R. (2019). Characterization and monitoring of reservoir flow barriers from pressure transient analysis for CO2 injection in saline aquifers. International Journal of Greenhouse Gas Control, 91. doi:10.1016/j.ijggc.2019.102842
Song, Y., Jun, S., Na, Y., Kim, K., Jang, Y., & Wang, J. (2023). Geomechanical challenges during geological CO2 storage: A review. Chemical Engineering Journal, 456. doi:10.1016/j.cej.2022.140968
Streit, J. E., & Hillis, R. R. (2004). Estimating fault stability and sustainable fluid pressures for underground storage of CO2 in porous rock. Energy, 29(9-10), 1445-1456. doi:10.1016/j.energy.2004.03.078
Taghipour, M., Ghafoori, M., Lashkaripour, G. R., Hafezi Moghaddas, N., & Molaghab, A. (2020). A Geomechanical Evaluation of Fault Reactivation Using Analytical Methods and Numerical Simulation. Rock Mechanics and Rock Engineering, 54(2), 695-719. doi:10.1007/s00603-020-02309-7
Tarokh, A., Makhnenko, R. Y., Kim, K., Zhu, X., Popovics, J. S., Segvic, B., & Sweet, D. E. (2020). Influence of CO2 injection on the poromechanical response of Berea sandstone. International Journal of Greenhouse Gas Control, 95. doi:10.1016/j.ijggc.2020.102959
Thibeau, S., Nghiem, L. X., & Ohkuma, H. (2007). A modeling study of the role of selected minerals in enhancing CO2 mineralization during CO2 aquifer storage. Paper presented at the SPE annual technical conference and exhibition.
Thomas, G. W., & Thurnau, D. H. (1983). Reservoir simulation using an adaptive implicit method. Society of Petroleum Engineers Journal, 23(05), 759-768.
Tran, D., Settari, A., & Nghiem, L. (2002). New iterative coupling between a reservoir simulator and a geomechanics module. Paper presented at the SPE/ISRM Rock Mechanics Conference.
Vadacca, L., Rossi, D., Scotti, A., & Buttinelli, M. (2021). Slip Tendency Analysis, Fault Reactivation Potential and Induced Seismicity in the Val d'Agri Oilfield (Italy). Journal of Geophysical Research: Solid Earth, 126(1). doi:10.1029/2019jb019185
Vilarrasa, V., Makhnenko, R., & Gheibi, S. (2016). Geomechanical analysis of the influence of CO 2 injection location on fault stability. Journal of Rock Mechanics and Geotechnical Engineering, 8(6), 805-818. doi:10.1016/j.jrmge.2016.06.006
Watts, J. (1986). A compositional formulation of the pressure and saturation equations. SPE reservoir engineering, 1(03), 243-252.
Yang, Z., Yehya, A., Iwalewa, T. M., & Rice, J. R. (2021). Effect of Permeability Evolution in Fault Damage Zones on Earthquake Recurrence. Journal of Geophysical Research: Solid Earth, 126(9). doi:10.1029/2021jb021787
Yukutake, Y., Takeda, T., & Yoshida, A. (2015). The applicability of frictional reactivation theory to active faults in Japan based on slip tendency analysis. Earth and Planetary Science Letters, 411, 188-198. doi:10.1016/j.epsl.2014.12.005
Zhou, Q., & Birkholzer, J. T. (2011). On scale and magnitude of pressure build-up induced by large-scale geologic storage of CO2. Greenhouse Gases: Science and Technology, 1(1), 11-20. doi:10.1002/ghg3.1
Nghiem, L.X. and Li, Y.-K., "Phase-Equilibrium Calculations for Reservoir Engineering and Compositional Simulation", Second International Forum on Reservoir Simulation, Alpbach, Austria,September 4-8, 1989.
Nghiem, L.X. and Li, Y.-K., "Phase-Equilibrium Calculations for Reservoir Engineering and Compositional Simulation", First International Forum on Reservoir Simulation, Alpbach, Austria, September 12-16, 1988.
ISO 27914:2017,Carbon dioxide capture, transportation and geological storage —Geological storage,2017