| 研究生: |
林淑萍 Lin, Shu-Ping |
|---|---|
| 論文名稱: |
神經元介面微電極陣列之製造與體外特性描述 Fabrication and In-Vitro Characterization of Microelectrode Array for Neuronal Interfaces |
| 指導教授: |
陳家進
Chen, Jia-Jin |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 醫學工程研究所 Institute of Biomedical Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 英文 |
| 論文頁數: | 93 |
| 中文關鍵詞: | 三維細胞培養基質 、多點式神經元介面微電極 、生物相容性 、降解性材料 、表面改質 、阻抗量測 、自我排列單分子膜 |
| 外文關鍵詞: | self-assembled monolayers, degradable biomaterials, biocompatibility, 3D cell matrix, impedance measurement, surface modification, MEA |
| 相關次數: | 點閱:96 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要是利用體外分析量測方法探討表面改質之神經元介面多點式微電極於未來體內植入為需求之應用。藉由微機電製程的技術(MEMS techniques)製造出兩種不同以聚亞醯胺(PI)為基底之多點式神經元介面的金微電極,包括培養皿式平面微電極(Petri-dishlike planar MEA)及軟性神經植入式電極(flexible neural implant)。利用MUA的自我排列單分子膜(SAMs)進行培養皿式微電極的表面改質處理。為了增加培養皿式微電極的生物相容性,選用具有生物活性的分子—PDL固定於經MUA自我排列單分子膜修飾過的電極上。紅外線光譜儀(FTIR)的頻譜顯示其表面處理後具有特殊的共價鍵結(covalent bonding)化學官能基,其分別為醯胺I鍵結(1,613 cm-1)及醯胺II鍵結(1,548 cm-1)。以阻抗量測儀測量未經表面改質與經表面改質過後培養皿式平面微電極的阻抗變化,發現改質過後的電極阻抗從原本的352.9 ± 34.4 kΩ稍微升高至524.6 ± 55.8 kΩ(p<0.05, N=20)。此外,經由七天連續量測隨時間變化之總阻抗(由實部電阻及虛部阻抗值組成)實驗中,可以進一步推得細胞株是否健康生長接觸於電極上。藉由細胞株及活體細胞培養於修飾過後電極上,證實有非常良好的生長結果。在另一方面,軟性神經植入式電極因為具有較小的硬度,所以在植入後可以順應組織的變化以減少不必要的組織傷害。然而,軟性神經植入式電極因為有彎曲效應以致於無法穿透軟性組織。因此,PDL混合於聚乙二醇凝膠(PEG)合成之PEGDL凝膠,可以應用於批覆於軟性神經植入式電極上用以增加電極的硬度。利用紅外線光譜儀及掃瞄式電子顯微鏡(SEM)分析凝膠的化學鍵結成分、降解反應及凝膠表面的觀察。這些體外分析顯示均質地披覆凝膠於軟性神經植入式電極除了可以增加電極的硬度,而且披覆的凝膠也會隨著時間產生降解。另外,所披覆的PEGDL凝膠於體外細胞測試結果顯示具有很良好的生物相容性。掃瞄式電子顯微鏡分析顯示額外的生物活性的分子—laminin於PEGDL凝膠中可以提供神經細胞更良好的生長環境。生化測試顯示神經細胞在軟性神經植入式電極以及披覆凝膠之軟性神經植入式電極具有神經細胞固有的功能特性。所以,PEGDL凝膠披覆可以提供軟性神經植入式電極足夠的硬度及增加其生物相容性。最後,本研究亦探討結合培養皿式平面微電極與PEGDL凝膠,進一步用阻抗量測探討細胞在三維空間下的動態特性描述。在連續八天之動態阻抗量測實驗中,可推估細胞在三維結構空間下生長的情形。另外,一系列的生物相容性測試驗證此一三維細胞培養基質不但可以提供一適合細胞生長的環境。亦可以在平面電極上架構一仿生性的系統以提供未來有效電生理刺激量測之計畫及診斷檢驗。
This study aims to investigate surface-modified microelectrodes on the microelectrode arrays (MEAs) for neuronal interfaces with in vitro cell culture. Two kinds of polyimide (PI) MEA, including Petri-dishlike planar MEA and flexible neural implant (NI), were fabricated by using micro-electro-mechanical systems (MEMS) techniques. Self-assembled monolayers (SAMs) of 11-mercaptoundecanoic acid (MUA) were utilized to modify the microelectrode surface of the planar MEA. To increase biocompatibility, the poly-D-lysine (PDL) was immobilized on the SAMs' modified microelectrodes. Spectra of the Fourier transform infrared reflection (FTIR) revealed that covalent amide bonding, amide I (at 1,613 cm-1) and amide II (at 1,548 cm-1), existed in PDL-MUA-SAMs modified surfaces. The impedance measurement of PDL-MUA-SAMs modified MEA only increased slightly to an average of 524.6 ± 55.8 kΩ from 352.9 ± 34.4 kΩ of bare gold microelectrode (p<0.05, N=20). In order to infer the growth of cell lines on the electrode contact of modified MEA, the time-course changes of total impedance resulting from cell sealing resistance and gap reactance were recorded for 7 days. The experiment of cell-line and primary-cell culture on the modified MEAs displayed a good adhesion rate.
On the other hand, flexible NIs with reduced stiffness are desirable for future implantation applications. Implantable NIs require the flexibility to conform to tissue movement, but they can easily affected by bending effect on mechanical properties and subsequently render them incapable of penetrating soft tissues. Poly(ethylene glycol) hydrogel supplemented with PDL (PEGDL) as a coat for flexible NIs was synthesized to enhance the stiffness of material surface. The PEGDL-coated and uncoated NIs were compared the mechanical properties by tensiometry. FTIR microscopy and scanning electron microscopy (SEM) were employed to characterize the chemical bonding, degradation, and surface topography of the PEGDL coat. These analyses indicated that a homogeneous coating increased the stiffness of NIs and the coating can be degraded over time in in-vitro tests. The ability of our coated implants to support the growth and differentiation of NIH3T3 fibroblasts and cortical neurons in vitro was examined as a measure of biocompatibility and found to be excellent. Furthermore, Western blot analysis of cell lysates from neurons treated with glutamate indicated proper neuronal function on our engineered material. Our observations indicate that PEGDL coating exhibits an increase in stiffness and improvement in biocompatibility.
Finally, the combination of PEGDL on surface-modified planar MEA was constructed to characterize the cell growth on 3D matrix MEA by using impedance measurement. The time-course changes of total impedance, cell sealing resistance, and gap reactance were recorded for 8 days for inferring the growth of cells in the 3D culture hydrogel system on the MEA. In addition, serial biocompatibility assays demonstrated that 3D matrix can not only provide a good environment for cell growth but also construct a biomimetic system on our planar MEA for effective electrophysiological stimulation/sensing schemes or diagnostic examinations in the future.
[1] Ruttn WLC, Smit JPA, Frieswijk TA, Bielen JA, Brouwer ALH, Buitenweg JR, Heida C. Neuro-electronic interfacing with multielectrode arrays. IEEE Eng Med Biol Mag, 47-55, 1999.
[2] Keefer EW, Gramowski A, Stenger DA, Pancrazio JJ, Gross GW. Characterization of acute neurotoxic effects of trimethylolpropane phosphate via neuronal network biosensors. Biosens Bioelectron, Vol. 16:513-525, 2001.
[3] Ingebrandt S, Yeung CK, Krause M, Offenhäusser A. Cardiomyocyte-transistor-hybrids for sensor application. Biosens Bioelectron, Vol. 16:565-570, 2001.
[4] Stenger DA, Gross GW, Keefer EW, Shaffer KM, Andreadis JD, Ma W, Pancrazio JJ. Detection of physiologically active compounds using cell-based biosensors. Trends Biotechnol, Vol. 19:304-309, 2001.
[5] Yagi T, Ito Y, Kanda H, Tanaka S, Watanabe M, Uchikawa Y. Hybrid retinal implant: fusion of engineering and neuroscience. Proceedings of IEEE International Conference on Systems, Man and Cybernetics, Vol. 4:382-385, 1999.
[6] Durick K, Negulescu P. Cellular biosensors for drug discovery. Biosens Bioelectron, Vol. 16:587-592, 2001.
[7] Chiappalone M, Vato A, Tedesco M(B), Marcoli M, Davide F, Martinoia S. Networks of neurons coupled to microelectrode arrays: a neuronal sensory system for pharmacological application. Biosens Bioelectron, Vol. 18:627-634, 2003.
[8] O’Shaughnessy TJ, Zim B, Ma W, Shaffer KM, Stenger DA, Zamani K, Gross GW, Pancrazio JJ. Acute neuropharmacologic action of chloroquine on cortical neurons in vitro. Brain Res, Vol. 959:280-286, 2003.
[9] Park TH, Shuler ML. Integration of cell culture and microfabrication technology. Biotechnol Progr, Vol. 19:243-253, 2003.
[10] Eckhorn R, Wilms M, Schanze T, Eger M, Hesse L, Eysel UT, Kisvarday ZF, Zrenner E, Gekeler F, Schwahn H, Shinoda K, Sachs H, Walter P. Visual resolution with retinal implants estimated from recordings in cat visual cortex. Vision Res, Vol. 46:2675-2690, 2006.
[11] Sachs HG, Gabel VP. Retinal replacement-the development of microelectronic retinal prostheses-experience with subretinal implants and new aspects. Graefe’s Arch Clin Exp Ophthalmol, Vol. 242:717-723, 2004.
[12] Heiduschka P, Thanos S. Implantable bioelectronic interfaces for lost nerve functions. Prog Neurobiol, Vol. 55:433-461, 1998.
[13] Nam Y, Branch DW, Wheeler BC. Epoxy-silane linking of biomolecules is simple and effective for patterning neuronal cultures. Biosens Bioelectron, Vol. 22:589-597, 2006.
[14] Cheung KC. Implantable microscale neural interfaces. Biomed Microdevices, Vol. 9:923-938, 2007.
[15] Stieglitz T, Gross M. Flexible BIOMEMS with electrode arrangements on front and back side as key component in neural prostheses and biohybrid systems. Sens Actuators B, Vol. 83:8-14, 2002.
[16] Takeuchi S, Suzuki T, Mabuchi K, Fujita H. 3D flexible multichannel neural probe array. J Micromech Microeng, Vol. 14:104-107, 2004.
[17] Suzuki T, Ziegler D, Mabuchi K, Takeuchi S. Flexible neural probes with micro-fluidic channels for stable interface with the nervous system. Proceedings of the 26th International IEEE EMBS Conference, 4057-4058, 2004.
[18] Takeuchi S, Yoshida Y, Ziegler D, Mabuchi K, Suzuki T. Parylene flexible neural probe with micro fluidic channel. Proceedings of the 17th International IEEE MEMS Conference, 208-211, 2004.
[19] Lee K, Massia S, He J. Biocompatible benzocyclobutene-based intracortical neural implant with surface modification. J Micromech Microeng, Vol. 15:2149-2155, 2005.
[20] Lee K, He J, Clement R, Massia S, Kim B. Biocompatible benzocyclobutene (BCB)-based neural implants with micro-fluidic channel. Biosens Bioelectron, Vol. 20:404-407, 2004.
[21] Martinoia S, Bonzano L, Chiappalone M, Tedesco M, Marcoli M, Maura G. In-vitro cortical neuronal networks as a new high-sensitive system for biosensing application. Biosens Bioelectron, Vol. 20:2071-2078, 2005.
[22] Kaji H, Takii Y, Nishizawa M, Matsue T. Pharmacological characterization of micropatterned cardiac myocytes. Biomaterials, Vol. 24:4239-4244, 2003.
[23] Schoenfisch MH, Ovadia M, Pemberton JE. Covalent surface chemical modification of electrodes for cardiac pacing applications. J Biomed Mater Res, Vol. 51:209-215, 2000.
[24] Nam Y, Chang JC, Wheeler BC, Brewer GJ. Gold-coated microelectrode array with thiol linked self-assembled monolayers for engineering neuronal cultures. IEEE T Bio-Med Eng, Vol. 51:158-165, 2004.
[25] Chou HA, Zavitz DH, Ovadia M. In vivo CH3(CH2)11SAu SAM electrodes in the beating heart: In situ analytical studies relevant to pacemakers and interstitial biosensors. Biosens Bioelectron, Vol. 18:11-21, 2003.
[26] Chidsey CED, Loiacono DN. Chemical Functionality in Self-Assembled Monolayers: Structural and Electrochemical Properties. Langmuir, Vol. 6:682-691, 1990.
[27] Yam CM, Zheng L, Salmain M, Pradier CM, Marcus P, Jaouen G. Labelling and binding of poly-(L-lysine) to functionalized gold surfaces. Combined FT-IRRAS and XPS characterization. Colloids Surf B: Biointerfaces, Vol. 21:317-327, 2001.
[28] Morales-Cruz AL, Tremont R, Martínez R, Romañach R, Cabrera CR. Atomic force measurements of 16-mercaptohexadecanoic acid and its salt with CH3, OH, and CONHCH3 functionalized self-assembled monolayers. Appl Surf Sci, Vol. 241:371-383, 2005.
[29] Smith RK, Lewis PA, Weiss PS. Patterning self-assembled monolayers. Prog Surf Sci, Vol. 75:1-68, 2004.
[30] Ulman A. Formation and Structure of Self-Assembled Monolayers. Chem Rev, Vol. 96:1533-1554, 1996.
[31] Slaughter GE, Bieberich E, Wnek GE, Wynne KJ, Guiseppi-Elie A. Improving neuron-to-electrode surface attachment via alkanethiol self-assembly: An alternating current impedance study. Langmuir, Vol. 20:7189-7200, 2004.
[32] Romanova EV, Oxley SP, Rubakhin SS, Bohn PW, Sweedler JV. Self-assembled monolayers of alkanethiols on gold modulate electrophysiological parameters and cellular morphology of cultured neurons. Biomaterials, Vol. 27:1665-1669, 2006.
[33] Liao JD, Lin SP, Wu YT. Dual properties of the deacetylated sites in chitosan for molecular immobilization and biofunctional effects. Biomacromolecules, Vol. 6:392-399, 2005.
[34] Northup SJ. Mammalian cell culture models, in handbook of biomaterials evaluation: scientific, technical and clinical testing of implant materials. New York Press, 209-225, 1986.
[35] O’Connor SM, Andreadis JD, Shaffer KM, Ma W, Pancrazio JJ, Stenger DA. Immobilization of neural cells in three-dimensional matrices for biosensor applications. Biosens Bioelectron, Vol. 14:871-881, 2000.
[36] Franco M, Nealey PF, Campbell S, Teixeira AI, Murphy CJ. Adhesion and proliferation of corneal epithelial cells on self-assembled monolayers. J Biomed Mater Res, Vol. 52:261-269, 2000.
[37] Freshney RI, Culture of Animal Cells: A Manual of Basic Technique, 4th edn. Wiley-Liss Press, New York, 177, 2000.
[38] Lambeng N, Michel PP, Brugg B, Agid Y, Ruberg M. Mechanisms of apoptosis in PC12 cells irreversibly differentiated with nerve growth factor and cyclic AMP. Brain Res, Vol. 821:60-68, 1999.
[39] Marques AP, Reis RL, Hunt JA. The biocompatibility of novel starch-based polymers and composites: in vitro studies. Biomaterials, Vol. 23:1471-1478, 2002.
[40] Singh A, Ehteshami G, Massia S, He J, Storer RG, Raupp G. Glial cell and fibroblast cytotoxicity study on plasma-deposited diamond-like carbon coatings. Biomaterials, Vol. 24:5083-5089, 2003.
[41] Lan S, Veiseh M, Zhang M. Surface modification of silicon and gold-patterned silicon surfaces for improved biocompatibility and cell patterning selectivity. Biosens Bioelectron, Vol. 20:1697-1708, 2005.
[42] Ratner BD, Hoffman AS, Schoen FJ, Lemons JE. Biomaterials science: An introduction to materials in medicine. Academic Press, Inc, New York, 165, 1996.
[43] Szarowski DH, Andersen MD, Retterer C, Spence AJ, Isaacson M, Craighead HG, Turner JN, Shain W. Brain responses to micro-machined silicon devices. Brain Res, Vol. 983:23-35, 2003.
[44] Turner JN, Shain W, Szarowski DH, Andersen M, Martins S, Isaacson S and Craighead H. Cerebral astrocyte response to micromachined silicon implants. Exp Neurol, Vol. 156:33-49, 1999.
[45] Spataro L, Dilgen J, Retterer S, Spence AJ, Isaacson M, Turner JN and Shain W. Dexamethasone treatment reduces astroglia responses to inserted neuroprosthetic devices in rat neocortex. Exp Neurol, Vol. 194:289-300, 2005.
[46] Williams JC, Hippensteel JA, Dilgen J, Shain W, Kipke DR. Complex impedance spectroscopy for monitoring tissue responses to inserted neural implants. J Neural Eng, Vol. 4:410-423, 2007.
[47] K’Owino IO, Sadik OA. Impedance spectroscopy: a powerful tool for rapid biomolecular screening and cell culture monitoring. Electroanalysis, Vol. 17:2101-2113, 2005.
[48] Franks W, Schenker I, Schmutz P, Hierlemann A. Impedance characterization and modeling of electrodes for biomedical applications. IEEE Trans Biomed Eng, Vol. 52:1295-1302, 2005.
[49] Guo M, Chen J, Yun X, Chen K, Nie L, Yao S. Monitoring of cell growth and assessment of cytotoxicity using electrochemical impedance spectroscopy. Biochim Biophys Acta, Vol. 1760:432-439, 2006.
[50] Abassi YA, Jackson JA, Zhu J, O’Connell J, Wang X, Xu X. Label-free, real-time monitoring of IgE-mediated mast cell activation on microelectronic cell sensor arrays. J Immunol Methods, Vol. 292:195-205, 2004.
[51] Newbold C, Richardson R, Huang CQ, Milojevic D, Cowan R, Shepherd R. An in vitro model for investigating impedance changes with cell growth and electrical stimulation: implications for cochlear implants. J Neural Eng, Vol. 1:218-227, 2004.
[52] Giaever I, Keese CR. Use of electric fields to monitor the dynamical aspect of cell behavior in tissue culture. IEEE Trans Biomed Eng, Vol. 33:242-247, 1986.
[53] Weiland JD, Anderson DJ, Humayun MS. In vitro electrical properties for iridium oxide versus titanium nitride stimulating electrodes. IEEE Trans Biomed Eng, Vol. 49:1574-1579, 2002.
[54] Merrill DR, Tresco PA. Impedance characterization of microarray recording electrodes in vitro. IEEE Trans Biomed Eng, Vol. 52:1960-1966, 2005.
[55] Buitenweg JR, Rutten WL, Willems WP, van Nieuwkasteele JW. Measurement of sealing resistance of cell-electrode interfaces in neuronal cultures using impedance spectroscopy. Med Biol Eng Comput, Vol. 36:630-637, 1998.
[56] Johnson MD, Otto KJ, Kipke DR. Repeated voltage biasing improves unit recordings by reducing resistive tissue impedances. IEEE Trans Neural Syst Rehabil Eng, Vol. 13:160-165, 2005.
[57] Otto KJ, Johnson MD, Kipke DR. Voltage pulses change neural interface properties and improve unit recordings with chronically implanted microelectrodes. IEEE Trans Biomed Eng, Vol. 53:333-340, 2006.
[58] Kyle AH, Chan CT, Minchinton AI. Characterization of three-dimensional tissue cultures using electrical impedance spectroscopy. Biophys J, Vol. 76:2640-2648, 1999.
[59] Linderholm P, Vannod J, Barrandon Y, Renaud P. Bipolar resistivity profiling of 3D tissue culture. Biosens Bioelectron, Vol. 22:789-796, 2007.
[60] O’Brien DP, Nichols TR, Allen MG. Flexible microelectrode arrays with integrated insertion devices. Proceedings of the 14th International IEEE MEMS Conference, 216-219, 2001.
[61] Takeuchi S, Ziegler D, Yoshida Y, Mabuchi K, Suzuki T. Parylene flexible neural probes integrated with microfluidic channels. Lab Chip, Vol. 5:519-523, 2005.
[62] Heiduschka P, Rpmann I, Stieglitz T, Thanos S. Perforated microelectrode arrays implanted in the regenerating adult central nervous system. Exp Neurol, Vol. 171:1-10, 2001.
[63] Greenwald RB, Choe YH, McGuire J, Conover CD. Effective drug delivery by PEGylated drug conjugates. Adv Drug Deliv Rev, Vol. 55:217-250, 2003.
[64] Lore AB, Hubbell JA, Bobb Jr DS, Ballinger ML, Loftin KL, Smith JW, Smyers ME, Garcia HD, Bittner GD. Rapid induction of functional and morphological continuity between severed ends of mammalian or earthworm myelinated axons. J Neurosci, Vol. 19:2442-2454, 1999.
[65] Riley SL, Dutt S, De La Torre R, Chen AC, Sah RL, Ratcliffe. Formulation of PEG-based hydrogels affects tissue-engineered cartilage construct characteristics. J Mater Sci Mater Med, Vol. 12:983-990, 2001.
[66] Mahoney MJ, Anseth KS. Three-dimensional growth and function of neural tissue in degradable polyethylene glycol hydrogels. Biomaterials, Vol. 27:2265-2274, 2006.
[67] Shapira-Schweitzer K, Seliktar D. Matrix stiffness affects spontaneous contraction of cardiomyocytes cultured within a PEGylated fibrinogen biomaterial. Acta Biomater, Vol. 3:33-41, 2007.
[68] Peyton SR, Raub CB, Keschrumrus VP, Putnam AJ. The use of poly(ethylene glycol) hydrogels to investigate the impact of ECM chemistry and mechanics on smooth muscle cells. Biomaterials, Vol. 27:4881-4893, 2006.
[69] Lin SP, Chen JJJ, Liao JD, Tzeng SF. Characterization of surface modification on microelectrode arrays for in vitro cell culture. Biomed Microdevices, Vol. 10:99-111, 2008.
[70] Massia SP, Holecko MM, Ehteshami GR. In vitro assessment of bioactive coatings for neural implant applications. J Biomed Mater Res A, Vol. 68:177-186,2004.
[71] Mendes RK, Freire RS, Fonseca CP, Neves S, Kubota LT. Characterization of self-assembled thiols monolayers on gold surface by electrochemical impedance spectroscopy. J Braz Chem Soc, Vol. 15:849-855, 2004.
[72] Rutten W, Mouveroux JM, Buitenweg J, Heida C, Ruardij T, Marani E, Lakke E. Neuroelectronic interfacing with cultured multielectrode arrays toward a cultured probe. Proceedings of the IEEE, Vol. 89:1013-1029, 2001.
[73] Buitenweg JR, Rutten WLC, Marani E, Polman SKL, Ursum J. Extracellular detection of active membrane currents in the neuron-electrode interface. J Neurosci Methods, Vol. 115:211-221, 2002.
[74] Liu YP, Lin HI, Tzeng SF. Tumor necrosis factor-α and interleukin-18 modulate neuronal cell fate in embryonic neural prohenitor culture. Brain Res, Vol. 1054:152-158, 2005.
[75] Flink S, van Veggel FCJM, Reinhoudt DN. Sensor functionalities in self-assembled monolayers. Adv Mater, Vol. 12:1315-1328, 2000.
[76] Wang D, Williams CG, Li Q, Sharma B, Elisseeff JH. Synthesis and characterization of a novel degradable phosphate-containing hydrogel. Biomaterials, Vol. 24:3969-3980, 2003.
[77] Madani F, Bessodes M, Lakrouf A, Vauthier C, Scherman D, Chaumeil JC. PEGylation of microspheres for therapeutic embolization: preparation, characterization and biological performance evaluation. Biomaterials, Vol. 28:1198-1208, 2007.
[78] Loh XJ, Tan KK, Li X, Li J. The in vitro hydrolysis of poly(ester urethane)s consisting of poly[(R)-3-hydroxybutyrate] and poly(ethylene glycol). Biomaterials Vol. 27:1841-1850, 2006.
[79] Galstyan AV, Hakobyan RS, Harbour S, Galstian T. Study of the inhibition period prior to the holographic grating formation in liquid crystal photopolymerizable materials. Electronic-Liq Cryst Commun, 1-15, 2004.
[80] Glantz SB, Cianci CD, Iyer R, Pradhan D, Wang KKW, Morrow JS. Sequential degradation of αII and βII spectrin by calpain in glutamate or maitotoxin-stimulated cells. Biochemistry US, Vol. 46:502-513, 2007.
[81] Wu HY, Yuen EY, Lu YF, Matsushita M, Matsui H, Yan Z. Regulation of N-methyl-D-aspartate receptors by calpain in cortical neurons. J Biol Chem, Vol. 280:21588-21593, 2005.