| 研究生: |
陳品豪 Chen, Pin-Hao |
|---|---|
| 論文名稱: |
比較二線使用基礎胰島素與口服降血糖藥物於metformin治療失敗後的台灣第二型糖尿病病患之臨床效益研究 Comparative effectiveness of second-line initiation of basal insulin therapy versus oral antidiabetic drugs added to metformin therapy among Taiwanese patients with type 2 diabetes |
| 指導教授: |
歐凰姿
Ou, Huang-Tz |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 臨床藥學與藥物科技研究所 Institute of Clinical Pharmacy and Pharmaceutical sciences |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 185 |
| 中文關鍵詞: | 基礎胰島素 、大血管病變 、小血管病變 、死亡 、低血糖 |
| 外文關鍵詞: | basal insulin, vascular outcomes, death, hypoglycemia |
| 相關次數: | 點閱:92 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中文摘要
研究背景
糖尿病全球盛行率隨著人口老化、肥胖人口增加等因素而逐年上升,因糖尿病而導致失能的人口數也逐年增加,造成全球約八千億美金的醫療負擔。第二型糖尿病有許多併發症,而糖尿病心血管併發症是造成糖尿病病人死亡的主因之一。目前已有研究證實糖尿病會增加心血管疾病的風險,目前有許多降血糖藥物可改善血糖控制,而胰島素過去在糖尿病的治療角色通常是最後一線的藥物治療,近來有研究指出早期使用基礎胰島素可以減緩身體胰島素分泌功能喪失,在後來的隨機分派研究中也發現在糖尿病前期或新發生糖尿病的病人,使用基礎胰島素與標準治療相比並不會增加心血管風險,但在觀察性研究卻發現使用胰島素可能會增加心血管風險與死亡率。基於現行臨床指引已將基礎胰島素列為第二線降血糖藥物的選擇之一,以及我們對早期使用基礎胰島素的興趣,因此我們試圖比較二線使用基礎胰島素與其他口服降血糖藥物的臨床效益與安全性。
研究目的
本研究對象為過去使用metformin單一治療仍無法控制糖尿病病情,在不停用metfomin的情況下,首次加上不同種類第二線降血糖藥物的台灣第二型糖尿病人。研究目的為比較第二線使用胰島素與口服降血糖藥物治療之臨床效益,包含:糖尿病相關大血管病變、糖尿病相關小血管病變、低血糖以及全因死亡。
研究方法
本研究為回溯性世代研究,研究材料為台灣健保資料庫糖尿病病人抽樣歸人檔1999-2013年承保資料。研究族群為2009年至2011年間首次穩定使用metfomin與研究藥物之一的雙重降血糖藥物組合,這些研究藥物包含: basal insulin, sulfonylureas (SUs), dipeptidyl peptidase-4 inhibitor (DPP4-i), acarbose,以及thiazolidinedione (TZD)。主分析中,本研究收納族群為18歲以上第二型糖尿病病人,主要觀察結果為心血管事件總和、小血管事件總和、低血糖事件、以及死亡。本研究分析方式採用意向分析(intention-to-treat analysis),追蹤至資料終止或是病人於資料庫中最後一筆記錄,並利用傾向分數配對(propensity score matching) 校正研究族群之基本特徵差異,以Cox比例風險模式(cox proportional hazard model)比較兩組別之觀察結果之風險。為確保研究結果的穩定性,我們測試多種交互作用項(interaction term)對研究結果的影響,並調整各操作型定義以進行敏感性分析。
研究結果
本研究結果發現,第二型糖尿病病人在接受metfomin與研究藥物 併用的雙重降血糖藥物組合之中,basal insulin和其他口服降血糖藥物相比,有較高且具顯著差異的血管病變與死亡風險。各研究組別主要觀察結果如下(HR, 95% CI): (1) basal insulin vs. SUs: 心血管事件總和(1.36, 1.08-1.71)、小血管事件總和(1.25, 1.12-1.40)、低血糖事件(1.88, 1.44-2.46)、死亡(1.50, 1.03-2.20)。(2) basal insulin vs. DPP4-i: 心血管事件總和(1.52, 1.18-1.97)、小血管事件總和(1.43, 1.27-1.61)、低血糖事件(3.28, 2.33-4.64)、死亡(2.58, 1.59-4.19)。(3) basal insulin vs. TZD: 心血管事件總和(1.20, 0.87-1.67)、小血管事件總和(1.43, 1.21-1.67)、低血糖事件(5.38, 3.03-9.57)、死亡(3.09, 1.55-6.15)。(4) basal insulin vs. acarbose: 心血管事件總和(1.25, 0.98-1.60)、小血管事件總和(1.48, 1.31-1.68)、低血糖事件(3.48, 2.39-5.07)、死亡(2.33, 1.45-3.76)。若將低血糖放入Cox比例風險模式作為校正因子時,部分觀察結果之風險比點估計值呈現下降趨勢。在敏感性分析中,研究結果的方向性,並未因操作型定義的變動而造成方向性的改變。
研究結論
本研究結果發現,basal insulin和其他口服降血糖藥物相比,做為第二線降血糖藥物有較高且具顯著差異的血管病變與死亡風險。本研究推估,除了藥物本身因素外,胰島素治療所帶來之低血糖風險,可能是造成第二線基礎胰島素使用者有較高血管病變與死亡風險的原因之一。未來,若病人需要使用基礎胰島素作為第二線治療用藥時,醫療人員與病人皆應嚴密注意低血糖風險,避免低血糖事件的發生。
SUMMARY
To investigate comparative effectiveness of basal insulin and oral anti-diabetic drugs (OADs) as 2nd line add-on treatment medication to metformin in type 2 diabetes (T2DM), this study was aimed to estimate the risks of macrovascular events, microvascular events, hypoglycemia, and all-cause mortality of 2nd basal insulin users as compared to other 2nd OADs. Selection criteria of study population included newly diagnosed T2DM during 1999-2011, and newly and stable prescribed metformin-based dual therapy with basal insulin or OADs during 2009-2011. The subjects were stratified based on their 2nd-line drug: basal insulin, sulphonylureas (SUs), dipeptidyl peptidase-4 inhibitor (DPP4-i), thiazolidinedione (TZD) or acarbose. Propensity score matching (PSM) was used to adjust for baseline imbalances in patient’s characteristics and Cox proportional hazard model was applied to evaluate the risk of study outcomes. Study primary results revealed that basal insulin users were associated with significantly higher risks of all-cause death and hypoglycemia as compared to OADs, and associated with significantly higher risk of composite cardiovascular outcome as compared to either SUs group or DPP-4i group. The higher risks of vascular outcomes and all-cause death observed in this study might be partly explained by hypoglycemia, glucose variability and medication adherence. Additionally, we found that long-acting insulin were associated with non-significantly higher risk of macrovascular events compared to SUs or DPP-4i. Future research is needed to assure the long-term effects of basal insulin agents.
參考資料
1. Collaboration NRF. Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4· 4 million participants. The Lancet. 2016;387(10027):1513-1530.
2. Hay SI, Jayaraman SP, Truelsen T, et al. GBD 2015 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015 (vol 388, pg 1545, 2016). Lancet (London, England). 2017;389(10064):E1-E1.
3. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet (London, England). 2017;390(10100):1211-1259.
4. Seuring T, Archangelidi O, Suhrcke M. The economic costs of type 2 diabetes: a global systematic review. Pharmacoeconomics. 2015;33(8):811-831.
5. Eleftheriadou I, Grigoropoulou P, Liberopoulos E, Liatis S, Kokkinos A, Tentolouris N. Update on Cardiovascular Effects of Older and Newer Anti-diabetic Medications. Current medicinal chemistry. 2018;25(13):1549-1566.
6. Sarwar N, Gao P, Seshasai SR, et al. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet (London, England). 2010;375(9733):2215-2222.
7. Nissen SE, Wolski K. Effect of Rosiglitazone on the Risk of Myocardial Infarction and Death from Cardiovascular Causes. New England Journal of Medicine. 2007;356(24):2457-2471.
8. FDA. Food and Drug Administration. Guidance for industry: diabetes mellitus—evaluating cardiovascular risk in new antidiabetic therapies to treat type 2 diabetes. www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm071627.pdf(accessed 2018 May 6).
9. Meneghini LF. Early Insulin Treatment in Type 2 Diabetes: What are the pros? Diabetes Care. 2009;32(Suppl 2):S266-269.
10. Investigators OT, Gerstein HC, Bosch J, et al. Basal insulin and cardiovascular and other outcomes in dysglycemia. N Engl J Med. 2012;367(4):319-328.
11. Nystrom T, Bodegard J, Nathanson D, Thuresson M, Norhammar A, Eriksson JW. Second line initiation of insulin compared with DPP-4 inhibitors after metformin monotherapy is associated with increased risk of all-cause mortality, cardiovascular events, and severe hypoglycemia. Diabetes Res Clin Pract. 2017;123:199-208.
12. Roumie CL, Greevy RA, Grijalva CG, et al. Association between intensification of metformin treatment with insulin vs sulfonylureas and cardiovascular events and all-cause mortality among patients with diabetes. JAMA. 2014;311(22):2288-2296.
13. Currie CJ, Poole CD, Evans M, Peters JR, Morgan CL. Mortality and other important diabetes-related outcomes with insulin vs other antihyperglycemic therapies in type 2 diabetes. The Journal of clinical endocrinology and metabolism. 2013;98(2):668-677.
14. Ekstrom N, Svensson AM, Miftaraj M, et al. Cardiovascular safety of glucose-lowering agents as add-on medication to metformin treatment in type 2 diabetes: report from the Swedish National Diabetes Register. Diabetes, obesity & metabolism. 2016;18(10):990-998.
15. Gamble JM, Simpson SH, Eurich DT, Majumdar SR, Johnson JA. Insulin use and increased risk of mortality in type 2 diabetes: a cohort study. Diabetes, obesity & metabolism. 2010;12(1):47-53.
16. Hippisley-Cox J, Coupland C. Diabetes treatments and risk of heart failure, cardiovascular disease, and all cause mortality: cohort study in primary care. BMJ (Clinical research ed.). 2016;354:i3477.
17. ADA. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2018. Diabetes Care. 2018;41(Suppl 1):S13-s27.
18. Triplitt CL, Repas T, Alvarez C. Diabetes Mellitus. In: DiPiro JT, Talbert RL, Yee GC, Matzke GR, Wells BG, Posey LM. Pharmacotherapy: A Pathophysiologic Approach, 10e. New York, NY: McGraw-Hill Education; 2017.
19. Federation ID. IDF Diabetes Atlas, 8th edn. Belgium: International Diabetes Federation. 2017.
20. Collaboration NRF. Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4.4 million participants. Lancet (London, England). 2016;387(10027):1513-1530.
21. Jiang YD, Chang CH, Tai TY, Chen JF, Chuang LM. Incidence and prevalence rates of diabetes mellitus in Taiwan: analysis of the 2000-2009 Nationwide Health Insurance database. J Formos Med Assoc. 2012;111(11):599-604.
22. 衛生福利部. 中華民國一〇四年全民健康保險醫療統計. 2016.
23. Defronzo RA. Banting Lecture. From the triumvirate to the ominous octet: a new paradigm for the treatment of type 2 diabetes mellitus. Diabetes. 2009;58(4):773-795.
24. DeFronzo RA. Pathogenesis of type 2 diabetes mellitus. The Medical clinics of North America. 2004;88(4):787-835, ix.
25. Harris MI, Klein R, Welborn TA, Knuiman MW. Onset of NIDDM occurs at least 4-7 yr before clinical diagnosis. Diabetes Care. 1992;15(7):815-819.
26. ADA. 9. Cardiovascular Disease and Risk Management: <em>Standards of Medical Care in Diabetes—2018</em>. Diabetes Care. 2018;41(Supplement 1):S86-S104.
27. ADA. 10. Microvascular Complications and Foot Care: <em>Standards of Medical Care in Diabetes—2018</em>. Diabetes Care. 2018;41(Supplement 1):S105-S118.
28. Chan JC, Malik V, Jia W, et al. Diabetes in Asia: epidemiology, risk factors, and pathophysiology. Jama. 2009;301(20):2129-2140.
29. Deshpande AD, Harris-Hayes M, Schootman M. Epidemiology of diabetes and diabetes-related complications. Physical therapy. 2008;88(11):1254-1264.
30. Yu NC, Chen IC. A decade of diabetes care in Taiwan. Diabetes Res Clin Pract. 2014;106 Suppl 2:S305-308.
31. 衛生福利部. 民國105年死因統計年報. 2016.
32. Bommer C, Heesemann E, Sagalova V, et al. The global economic burden of diabetes in adults aged 20-79 years: a cost-of-illness study. The lancet. Diabetes & endocrinology. 2017;5(6):423-430.
33. Hanefeld M, Monnier L, Schnell O, Owens D. Early Treatment with Basal Insulin Glargine in People with Type 2 Diabetes: Lessons from ORIGIN and Other Cardiovascular Trials. Diabetes Ther. 2016;7(2):187-201.
34. ADA. 8. Pharmacologic Approaches to Glycemic Treatment: Standards of Medical Care in Diabetes-2018. Diabetes Care. 2018;41(Suppl 1):S73-s85.
35. Garber AJ, Abrahamson MJ, Barzilay JI, et al. Consensus Statement by the American Association of Clinical Endocrinologists and American College of Endocrinology on the Comprehensive Type 2 Diabetes Management Algorithm - 2018 Executive Summary. Endocr Pract. 2018;24(1):91-120.
36. Paneni F, Beckman JA, Creager MA, Cosentino F. Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: part I. European Heart Journal. 2013;34(31):2436-2443.
37. Matheus AS, Tannus LR, Cobas RA, Palma CC, Negrato CA, Gomes MB. Impact of diabetes on cardiovascular disease: an update. International journal of hypertension. 2013;2013:653789.
38. Khaw KT, Wareham N, Bingham S, Luben R, Welch A, Day N. Association of hemoglobin A1c with cardiovascular disease and mortality in adults: the European prospective investigation into cancer in Norfolk. Annals of internal medicine. 2004;141(6):413-420.
39. Selvin E, Marinopoulos S, Berkenblit G, et al. Meta-analysis: glycosylated hemoglobin and cardiovascular disease in diabetes mellitus. Annals of internal medicine. 2004;141(6):421-431.
40. Selvin E, Coresh J, Golden SH, Boland LL, Brancati FL, Steffes MW. Glycemic control, atherosclerosis, and risk factors for cardiovascular disease in individuals with diabetes: the atherosclerosis risk in communities study. Diabetes Care. 2005;28(8):1965-1973.
41. Stratton IM, Adler AI, Neil HA, et al. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ (Clinical research ed.). 2000;321(7258):405-412.
42. UKPDS. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group. Lancet (London, England). 1998;352(9131):837-853.
43. Abraira C, Colwell J, Nuttall F, et al. Cardiovascular events and correlates in the Veterans Affairs Diabetes Feasibility Trial. Veterans Affairs Cooperative Study on Glycemic Control and Complications in Type II Diabetes. Archives of internal medicine. 1997;157(2):181-188.
44. Abraira C, Duckworth WC, Moritz T. Glycaemic separation and risk factor control in the Veterans Affairs Diabetes Trial: an interim report. Diabetes, obesity & metabolism. 2009;11(2):150-156.
45. Gerstein HC, Riddle MC, Kendall DM, et al. Glycemia treatment strategies in the Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial. The American journal of cardiology. 2007;99(12a):34i-43i.
46. Patel A, MacMahon S, Chalmers J, et al. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med. 2008;358(24):2560-2572.
47. LeBras MH, Barry AR, Koshman SL. Cardiovascular safety outcomes of new antidiabetic therapies. American journal of health-system pharmacy : AJHP : official journal of the American Society of Health-System Pharmacists. 2017;74(13):970-976.
48. Zinman B, Wanner C, Lachin JM, et al. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N Engl J Med. 2015;373(22):2117-2128.
49. Neal B, Perkovic V, Mahaffey KW, et al. Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes. N Engl J Med. 2017;377(7):644-657.
50. Marso SP, Daniels GH, Brown-Frandsen K, et al. Liraglutide and Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med. 2016;375(4):311-322.
51. Xu J, Rajaratnam R. Cardiovascular safety of non-insulin pharmacotherapy for type 2 diabetes. Cardiovascular Diabetology. 2017;16.
52. Paneni F, Luscher TF. Cardiovascular Protection in the Treatment of Type 2 Diabetes: A Review of Clinical Trial Results Across Drug Classes. The American journal of medicine. 2017;130(6s):S18-s29.
53. Kumar R, Kerins DM, Walther T. Cardiovascular safety of anti-diabetic drugs. European heart journal. Cardiovascular pharmacotherapy. 2016;2(1):32-43.
54. Alvarsson M, Sundkvist G, Lager I, et al. Beneficial effects of insulin versus sulphonylurea on insulin secretion and metabolic control in recently diagnosed type 2 diabetic patients. Diabetes Care. 2003;26(8):2231-2237.
55. Mu PW, Chen YM, Lu HY, et al. Effects of a combination of oral anti-diabetes drugs with basal insulin therapy on beta-cell function and glycaemic control in patients with newly diagnosed type 2 diabetes. Diabetes/metabolism research and reviews. 2012;28(3):236-240.
56. Chaudhuri A, Dandona P, Fonseca V. Cardiovascular Benefits of Exogenous Insulin. The Journal of Clinical Endocrinology & Metabolism. 2012;97(9):3079-3091.
57. Boldogh I, Bacsi A, Choudhury BK, et al. ROS generated by pollen NADPH oxidase provide a signal that augments antigen-induced allergic airway inflammation. Journal of Clinical Investigation. 2005;115(8):2169-2179.
58. Alvarsson M, Berntorp K, Fernqvist-Forbes E, et al. Effects of Insulin Versus Sulphonylurea on Beta-Cell Secretion in Recently Diagnosed Type 2 Diabetes Patients: A 6-Year Follow-Up Study. The Review of Diabetic Studies : RDS. 2010;7(3):225-232.
59. Holman RR, Paul SK, Bethel MA, Matthews DR, Neil HA. 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med. 2008;359(15):1577-1589.
60. Gilbert RE, Mann JF, Hanefeld M, et al. Basal insulin glargine and microvascular outcomes in dysglycaemic individuals: results of the Outcome Reduction with an Initial Glargine Intervention (ORIGIN) trial. Diabetologia. 2014;57(7):1325-1331.
61. Malmberg K, Ryden L, Wedel H, et al. Intense metabolic control by means of insulin in patients with diabetes mellitus and acute myocardial infarction (DIGAMI 2): effects on mortality and morbidity. European Heart Journal. 2005;26(7):650-661.
62. Mellbin LG, Malmberg K, Norhammar A, Wedel H, Ryden L. Prognostic implications of glucose-lowering treatment in patients with acute myocardial infarction and diabetes: experiences from an extended follow-up of the Diabetes Mellitus Insulin-Glucose Infusion in Acute Myocardial Infarction (DIGAMI) 2 Study. Diabetologia. 2011;54(6):1308-1317.
63. Frye RL, August P, Brooks MM, et al. A randomized trial of therapies for type 2 diabetes and coronary artery disease. N Engl J Med. 2009;360(24):2503-2515.
64. Hanefeld M. Use of insulin in type 2 diabetes: what we learned from recent clinical trials on the benefits of early insulin initiation. Diabetes Metab. 2014;40(6):391-399.
65. Hanefeld M, Fleischmann H, Landgraf W, Pistrosch F. EARLY Study: Early Basal Insulin Therapy under Real-Life conditions in type 2 Diabetics. Vol 212012.
66. Pistrosch F, Köhler C, Schaper F, Landgraf W, Forst T, Hanefeld M. Effects of insulin glargine versus metformin on glycemic variability, microvascular and beta-cell function in early type 2 diabetes. Acta Diabetologica. 2013;50(4):587-595.
67. Nathan DM, Buse JB, Kahn SE, et al. Rationale and design of the glycemia reduction approaches in diabetes: a comparative effectiveness study (GRADE). Diabetes Care. 2013;36(8):2254-2261.
68. Aschner P, Chan J, Owens DR, et al. Insulin glargine versus sitagliptin in insulin-naive patients with type 2 diabetes mellitus uncontrolled on metformin (EASIE): a multicentre, randomised open-label trial. The Lancet. 2012;379(9833):2262-2269.
69. 1992年ICD-9-CM 疾病碼一覽表. http://www.nhi.gov.tw/Resource/webdata/Attach_3468_1_ICD1992.pdf. Accessed January 31, 2018.
70. 李宗穎. 利用台灣健保資料庫比較第一型糖尿病病患使用長效胰島素和中效胰島素在糖尿病急、慢性併發症和死亡的風險. 成功大學臨床藥學與藥物科技研究所學位論文. 2016:1-128.
71. Chang HY, Weiner JP, Richards TM, Bleich SN, Segal JB. Validating the adapted Diabetes Complications Severity Index in claims data. The American journal of managed care. 2012;18(11):721-726.
72. ADA. Economic costs of diabetes in the U.S. In 2007. Diabetes Care. 2008;31(3):596-615.
73. Ginde AA, Blanc PG, Lieberman RM, Camargo CA, Jr. Validation of ICD-9-CM coding algorithm for improved identification of hypoglycemia visits. BMC endocrine disorders. 2008;8:4.
74. Chang GM, Tung YC. Factors Associated with Pneumonia Outcomes: A Nationwide Population-Based Study over the 1997–2008 Period. Journal of General Internal Medicine. 2012;27(5):527-533.
75. Lien HM, Chou SY, Liu JT. Hospital ownership and performance: evidence from stroke and cardiac treatment in Taiwan. Journal of health economics. 2008;27(5):1208-1223.
76. Anyanwagu U, Mamza J, Mehta R, Donnelly R, Idris I. Cardiovascular events and all-cause mortality with insulin versus glucagon-like peptide-1 analogue in type 2 diabetes. Heart (British Cardiac Society). 2016;102(19):1581-1587.
77. Morgan CL, Mukherjee J, Jenkins-Jones S, Holden SE, Currie CJ. Combination therapy with metformin plus sulphonylureas versus metformin plus DPP-4 inhibitors: association with major adverse cardiovascular events and all-cause mortality. Diabetes, obesity & metabolism. 2014;16(10):977-983.
78. Meduru P, Helmer D, Rajan M, Tseng CL, Pogach L, Sambamoorthi U. Chronic illness with complexity: implications for performance measurement of optimal glycemic control. Journal of General Internal Medicine. 2007;22 Suppl 3:408-418.
79. Hsieh HM, Tsai SL, Shin SJ, Mau LW, Chiu HC. Cost-effectiveness of diabetes pay-for-performance incentive designs. Medical care. 2015;53(2):106-115.
80. Chen HL, Hsiao FY. Risk of hospitalization and healthcare cost associated with Diabetes Complication Severity Index in Taiwan's National Health Insurance Research Database. Journal of diabetes and its complications. 2014;28(5):612-616.
81. 楊珺婷. 台灣第二型糖尿病病人於胰島素介入治療後之長期糖尿病併發症與安全性之分析. 成功大學臨床藥學與藥物科技研究所學位論文. 2017:1-160.
82. Nystrom T, Bodegard J, Nathanson D, Thuresson M, Norhammar A, Eriksson JW. Novel oral glucose-lowering drugs are associated with lower risk of all-cause mortality, cardiovascular events and severe hypoglycaemia compared with insulin in patients with type 2 diabetes. Diabetes, obesity & metabolism. 2017;19(6):831-841.
83. Holman RR, Coleman RL, Chan JCN, et al. Effects of acarbose on cardiovascular and diabetes outcomes in patients with coronary heart disease and impaired glucose tolerance (ACE): a randomised, double-blind, placebo-controlled trial. The lancet. Diabetes & endocrinology. 2017;5(11):877-886.
84. Group TAtCCRiDS. Effects of Intensive Glucose Lowering in Type 2 Diabetes. New England Journal of Medicine. 2008;358(24):2545-2559.
85. Mannucci E, Giannini S, Dicembrini I. Cardiovascular effects of basal insulins. Drug, Healthcare and Patient Safety. 2015;7:113-120.
86. J. WR, M. FB. Vascular disease and diabetes: is hypoglycaemia an aggravating factor? Diabetes/metabolism research and reviews. 2008;24(5):353-363.
87. Robinson RT, Harris ND, Ireland RH, Lee S, Newman C, Heller SR. Mechanisms of abnormal cardiac repolarization during insulin-induced hypoglycemia. Diabetes. 2003;52(6):1469-1474.
88. Zapatero A, Gomez-Huelgas R, Gonzalez N, et al. Frequency of hypoglycemia and its impact on length of stay, mortality, and short-term readmission in patients with diabetes hospitalized in internal medicine wards. Endocr Pract. 2014;20(9):870-875.
89. Shomali M. Hypoglycemia in the hospital. Journal of Community Hospital Internal Medicine Perspectives. 2011;1(2):10.3402/jchimp.v3401i3402.7217.
90. Torimoto K, Okada Y, Mori H, Tanaka Y. Relationship between fluctuations in glucose levels measured by continuous glucose monitoring and vascular endothelial dysfunction in type 2 diabetes mellitus. Cardiovascular Diabetology. 2013;12:1-1.
91. Saisho Y. Glycemic Variability and Oxidative Stress: A Link between Diabetes and Cardiovascular Disease? International Journal of Molecular Sciences. 2014;15(10):18381-18406.
92. Liang S, Yin H, Wei C, Xie L, He H, Liu X. Glucose variability for cardiovascular risk factors in type 2 diabetes: a meta-analysis. Journal of Diabetes and Metabolic Disorders. 2017;16:45.
93. Holman RR, Paul SK, Bethel MA, Matthews DR, Neil HAW. 10-Year Follow-up of Intensive Glucose Control in Type 2 Diabetes. New England Journal of Medicine. 2008;359(15):1577-1589.
94. Group TAC. Intensive Blood Glucose Control and Vascular Outcomes in Patients with Type 2 Diabetes. New England Journal of Medicine. 2008;358(24):2560-2572.
95. Zoungas S, Chalmers J, Neal B, et al. Follow-up of Blood-Pressure Lowering and Glucose Control in Type 2 Diabetes. New England Journal of Medicine. 2014;371(15):1392-1406.
96. Duckworth W, Abraira C, Moritz T, et al. Glucose control and vascular complications in veterans with type 2 diabetes. N Engl J Med. 2009;360(2):129-139.
97. Nathan DM, Buse JB, Kahn SE, et al. Rationale and Design of the Glycemia Reduction Approaches in Diabetes: A Comparative Effectiveness Study (GRADE). Diabetes Care. 2013;36(8):2254-2261.
98. Hsu JC, Cheng CL, Ross-Degnan D, et al. Effects of safety warnings and risk management plan for Thiazolidinediones in Taiwan. Pharmacoepidemiology and drug safety. 2015;24(10):1026-1035.
99. Cefalu WT, Kaul S, Gerstein HC, et al. Cardiovascular Outcomes Trials in Type 2 Diabetes: Where Do We Go From Here? Reflections From a Diabetes Care Editors' Expert Forum. Diabetes Care. 2018;41(1):14-31.
100. Ayad M, Costantine MM. Epidemiology of Medications Use in Pregnancy. Seminars in perinatology. 2015;39(7):508-511.
101. Ward RM. Difficulties in the study of adverse fetal and neonatal effects of drug therapy during pregnancy. Seminars in perinatology. 2001;25(3):191-195.
102. Vargesson N. Thalidomide‐induced teratogenesis: History and mechanisms. Birth Defects Research. 2015;105(2):140-156.
103. Addis A, Sharabi S, Bonati M. Risk classification systems for drug use during pregnancy: are they a reliable source of information? Drug safety. 2000;23(3):245-253.