| 研究生: |
林欣穎 Lin, Hsin-Ying |
|---|---|
| 論文名稱: |
基於自然材料之熱電耦合遮罩的最佳化 Optimizing Thermo-Electric Coupling Cloak Based on Natural Materials |
| 指導教授: |
楊瑞珍
Yang, Ruey-Jen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 自然材料 、雙層遮罩 、熱電效應 、多物理場 、熱電耦合遮罩 、雙變數優化 、逆向問題 |
| 外文關鍵詞: | Natural Materials, Bilayer Cloak, Thermo-Electric Effect, Multiple Physical Fields, Thermo-Electric Coupling Cloak, Dual-Variable Optimization, Inverse Problem |
| 相關次數: | 點閱:38 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
以往於熱遮罩設計的研究中通常採用熱超材做為遮罩材料,但礙於其製程相當繁瑣與困難,因此發展出多層理論與雙層理論,然而,多層理論中的各層均質材料在自然界中難以尋得,雙層理論又是假設內層為絕熱絕緣的理想物質,因此基於這些理論的後續遮罩研究皆僅能夠獲得符合需求的遮罩設計參數,而並未深入去探討遮罩製作的可行性。此外,過去的遮罩研究大多都專注於探討單一物理場下之表現,但在例如印刷電路板、通電裝置與設備等電子迴路之真實情況下,熱場與電場由於熱電效應之關係而經常同時存在並且相互影響,雖在近期陸續有學者也投入針對熱電耦合之雙物理場的遮罩研究,但由於求解出符合需求的遮罩設計參數後,除了不易找到同時符合熱、電場表現的自然材料外,也沒有考慮到遮罩構成材料與應用背景之間的合適性,所以目前仍難以將遮罩相關技術研究普及的實際應用於各項工程中。
而本文為改善與突破此現況,使遮罩相關之研究能夠更加貼近於實際情況,提高研究結果的可應用性,將利用真實存在於自然界當中的自然材料作為研究基礎,針對應用背景考慮材料合適性後選定遮罩建構之材料,再以其固定的材料參數來求解在熱電耦合雙物理場情況下的雙層雙功能遮罩之最佳化的尺寸設計,並利用目標函數分析、探討其隱形效能,因此本文與以往研究不同之處在於以固定的材料參數為基礎,同時優化雙功能遮罩的內、外層尺寸,達到利用真實存在的材料並考量實際應用面去建構遮罩之目的,於印刷電路板與植入式醫療器材之實際應用皆有不錯的成果。
The cloak design method proposed in the past is to use the optimization method to obtain the physical parameters that meet the performance of the cloak under the condition that the thickness dimensions of the inner and outer layers of the cloak are known, but it faces the problem that it is not easy to find the natural materials in the nature that correspond to the physical parameters. Although metamaterials can be adjusted by human control of the material's physical properties, the cumbersome and costly manufacturing process is still a major obstacle to the practical construction of cloaks, and therefore most of the research on thermo-electric cloaks remains at the theoretical stage, making it difficult to be applied in practice. In this study, based on the easier-to-construct bilayer structure, we take the real materials existing in nature as the research basis, consider the suitability of the cloak construction materials for the application background of the cloak, and then select the materials to be used in each layer of the cloak, and calculate the optimal dimensional design of the bilayer thermo-electric cloak under the thermo-electrical coupling of dual physical fields with the fixed material parameter, and utilize the cost function to analyze and explore the cloaking performance of the cloak. Therefore, the difference between this paper and previous studies lies in the optimization of the inner layer and outer layer dimensions of the bifunctional cloaks based on fixed material parameters, in order to achieve the purpose of constructing the cloaks by using real existing materials and considering the actual application surface. In this paper, the optimal design of cloak dimensions is calculated by using two different application backgrounds, namely, printed circuit boards (PCBs) and implantable medical devices (IMDs), and the cloaking and protection efficacies of the results of this optimization of the cloaks are explored.
[1] Narayana, S. and Sato, Y., Heat flux manipulation with engineered thermal materials, Physical review letters, 108 (21), 214303, (2012).
[2] Schittny, R., Kadic, M., Guenneau, S., and Wegener, M., Experiments on transformation thermodynamics: molding the flow of heat, Physical review letters, 110 (19), 195901, (2013).
[3] Ji, Q., Qi, Y., Liu, C., Meng, S., Liang, J., Kadic, M., and Fang, G., Design of thermal cloaks with isotropic materials based on machine learning, International Journal of Heat and Mass Transfer, 189 122716, (2022).
[4] Yeung, W.-S. and Yang, R.-J., Introduction to Thermal Cloaking: Theory and Analysis in Conduction and Convection. 2022: Springer.
[5] Leonhardt, U., Optical conformal mapping, science, 312 (5781), 1777-1780, (2006).
[6] Pendry, J.B., Schurig, D., and Smith, D.R., Controlling electromagnetic fields, science, 312 (5781), 1780-1782, (2006).
[7] Fan, C., Gao, Y., and Huang, J., Shaped graded materials with an apparent negative thermal conductivity, Applied Physics Letters, 92 (25), 251907, (2008).
[8] Guenneau, S., Amra, C., and Veynante, D., Transformation thermodynamics: cloaking and concentrating heat flux, Optics Express, 20 (7), 8207-8218, (2012).
[9] Han, T., Bai, X., Gao, D., Thong, J.T., Li, B., and Qiu, C.-W., Experimental demonstration of a bilayer thermal cloak, Physical review letters, 112 (5), 054302, (2014).
[10] Alekseev, G. and Levin, V. An optimization method for the problems of thermal cloaking of material bodies. in Doklady Physics. 2016. Springer.
[11] Alekseev, G., Levin, V., and Tereshko, D. Optimization analysis of the thermal cloaking problem for a cylindrical body. in Doklady Physics. 2017. Springer.
[12] Alekseev, G.V. and Tereshko, D.A., Particle swarm optimization-based algorithms for solving inverse problems of designing thermal cloaking and shielding devices, International journal of heat and mass transfer, 135 1269-1277, (2019).
[13] Alekseev, G. and Tereshko, D. Optimization-based method of solving 2D thermal cloaking problems. in Journal of Physics: Conference Series. 2019. IOP Publishing.
[14] Alekseev, G., Tereshko, D., and Paklina, E. Optimization Method in 2D DC Cloaking Problems. in 2018 Progress in Electromagnetics Research Symposium (PIERS-Toyama). 2018. IEEE.
[15] Han, T., Yang, P., Li, Y., Lei, D., Li, B., Hippalgaonkar, K., and Qiu, C.W., Full‐parameter omnidirectional thermal metadevices of anisotropic geometry, Advanced Materials, 30 (49), 1804019, (2018).
[16] Yang, F.-Y., Hung, F.-S., Yeung, W.-S., and Yang, R.-J., Optimization method for practical design of planar arbitrary-geometry thermal cloaks using natural materials, Physical Review Applied, 15 (2), 024010, (2021).
[17] Feng, H. and Ni, Y., Bifunctions of invisible sensors and cloaks in thermal–electric fields, Journal of Applied Physics, 131 (2), 025107, (2022).
[18] Fujii, G. and Akimoto, Y., Optimizing the structural topology of bifunctional invisible cloak manipulating heat flux and direct current, Applied physics letters, 115 (17), 174101, (2019).
[19] Kuo, H.-P., Coupling Thermal and Electric Fields Analysis of a Cloak, Master Thesis, National Cheng Kung University. (2022).
[20] Dede, E.M., Schmalenberg, P., Nomura, T., and Ishigaki, M., Design of anisotropic thermal conductivity in multilayer printed circuit boards, IEEE Transactions on Components, Packaging and Manufacturing Technology, 5 (12), 1763-1774, (2015).
[21] Kim, J.C., Ren, Z., Yuksel, A., Dede, E.M., Bandaru, P.R., Oh, D., and Lee, J., Recent advances in thermal metamaterials and their future applications for electronics packaging, Journal of Electronic Packaging, 143 (1), (2021).
[22] Bayomy, A., Saghir, M., and Yousefi, T., Electronic cooling using water flow in aluminum metal foam heat sink: Experimental and numerical approach, International Journal of Thermal Sciences, 109 182-200, (2016).
[23] Zhang, N., Jiao, B., Ye, Y., Kong, Y., Du, X., Liu, R., Cong, B., Yu, L., Jia, S., and Jia, K., Embedded cooling method with configurability and replaceability for multi-chip electronic devices, Energy Conversion and Management, 253 115124, (2022).
[24] Multiphysics, C., Introduction to COMSOL multiphysics®, COMSOL Multiphysics, Burlington, MA, accessed Feb, 9 (2018), 32, (1998).
[25] Pryor, R.W., Multiphysics modeling using COMSOL®: a first principles approach. 2009: Jones & Bartlett Publishers.
[26] Matlab, S., Matlab, The MathWorks, Natick, MA, (2012).
[27] Hung, F.-S., Convection Cloaking Analysis by Multivariable Optimization, Master Thesis, National Cheng Kung University. (2021).
[28] Chang, J.-K., Deep Learning Method for Designing Bilayer Isotropic Thermal Cloak, Master Thesis, National Cheng Kung University. (2022).
[29] Powell, R. and Tye, R., The thermal and electrical conductivity of titanium and its alloys, Journal of the less Common Metals, 3 (3), 226-233, (1961).
[30] Yeung, W.-S., Yang, F.-Y., and Yang, R.-J., Analysis of a trilayer thermal cloak, AIP Advances, 10 (5), 055102, (2020).