| 研究生: |
徐天庸 Hsu, Tien-Yung |
|---|---|
| 論文名稱: |
以分子動力學分析磷化鎵奈米線之機械性質 A Study on Mechanical Behaviors of GaP nanowires by Molecular Dynamics Simulation |
| 指導教授: |
陳鐵城
Chen, Tei-Chen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 90 |
| 中文關鍵詞: | 分子動力學 、磷化鎵 、奈米線 、閃鋅礦 、纖鋅礦 |
| 外文關鍵詞: | GaP nanowires, Zinc-blende, Wurtzite, Molecular dynamics |
| 相關次數: | 點閱:112 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
各種高科技產業的快速發展和微機電製程技術的快速進步,使材料結構的尺度和元件製程的精確度已經邁入奈米尺度(nanoscale)的操控世界。本研究重點在於探討磷化鎵奈米線在奈米尺度下閃鋅礦與纖鋅礦結構之機械及材料特性。在理論模擬方法上,使用分子動力學模擬法與Tersoff勢能函數作為理論基礎,並配合軟體LAMMPS作為工具,分析在不同的結構、方向、長度、溫度、截面尺寸及形狀等條件下之磷化鎵奈米線受單軸向拉伸,材料的滑移系統、強度、應力分佈以及奈米線在拉伸的斷裂過程。其結果顯示不同方向之閃鋅礦結構奈米線中,楊氏模數的大小為[111]>[110]>[001]。而閃鋅礦[111]與纖鋅礦[0001]奈米線在不同截面形狀下則是以方形截面會優於六邊形截面;而從奈米線截面尺寸來看,發現閃鋅礦[111]方向之奈米線其強度與破壞應力隨著截面直徑增加而上升;纖鋅礦[0001]方向則是隨著直徑增加而先生後降。以六邊形截面之閃鋅礦[111]與纖鋅礦[0001]奈米線來看,奈米線之破壞應力會隨著溫度降低、應變速率下降以及長度增加而升高,此外,從奈米線拉伸過程可觀察出,閃鋅礦結構在破壞時是由「角」開始,而纖鋅礦結構在破壞時是由「邊」開始。纖鋅礦結構之奈米線無論是強度及楊氏模數都優於閃鋅礦結構之奈米線。
Mechanical and fracture behaviors of GaP nanowires (NWs) in zinc-blende and wurtzite phases were investigated by Molecular dynamics simulations using the program package LAMMPS with Tersoff potential. Simulation was performed and focused on the effects of different structure, orientation, length, temperature and diameter on the behaviors of slip system, strength, stress distribution and fracture process of NWs under uniaxial tension. The results show that the magnitude of Young’s modulus of zinc-blende GaP NWs in [111] orientation is greater than [110] and [001], while [001] is the smallest. For zinc-blende [111] and wurtzite [0001] GaP NWs with different cross-sectional shape, the magnitude of Young’s modulus of square is higher than the hexagon. On the other hand, size effect of the NWs is significant. The magnitude of Young’s modulus and fracture stress of zinc-blende GaP nanowires decreases with the decrease of diameter. However, the magnitude of Young’s modulus and fracture stress of wurtzite GaP nanowires has no such a monotonic relation. In addition, the fracture stress of both zinc-blende and wurtzite GaP NWs increases with decreasing temperature and strain rate and with increasing length of NWs. Viewing from the cross-section, the fracture of zinc-blende and wurtzite GaP NWs individually initiates from the corner and the side of the outer surface. Specially, the strength of the NWs in wurtzite structure is higher than in zinc-blende structure.
參考文獻
[1] A. D. Berry, R. J. Tonucci, and M. Fatemi, "Fabrication of GaAs and InAs wires in nanochannel glass," Applied Physics Letters, vol. 69, pp. 2846-2848, Nov 4 1996.
[2] R. C. Johnson, "IBM Nanowires Add Photonics to Silicon," in EE Times, ed, 2014.
[3] S. M. Gao, Y. Xie, J. Lu, G. A. Du, W. He, D. L. Cui, et al., "Mild benzene-thermal route to GaP nanorods and nanospheres," Inorganic Chemistry, vol. 41, pp. 1850-1854, Apr 8 2002.
[4] V. Gottschalch, G. Wagner, J. Bauer, H. Paetzelt, and M. Shirnow, "VLS growth of GaN nanowires on various substrates," Journal of Crystal Growth, vol. 310, pp. 5123-5128, Nov 15 2008.
[5] W. Q. Han, S. S. Fan, Q. Q. Li, and Y. D. Hu, "Synthesis of gallium nitride nanorods through a carbon nanotube-confined reaction," Science, vol. 277, pp. 1287-1289, Aug 29 1997.
[6] M. Jeppsson, K. A. Dick, J. B. Wagner, P. Caroff, K. Deppert, L. Samuelson, et al., "GaAs/GaSb nanowire heterostructures grown by MOVPE," Journal of Crystal Growth, vol. 310, pp. 4115-4121, Aug 15 2008.
[7] M. Koguchi, H. Kakibayashi, M. Yazawa, K. Hiruma, and T. Katsuyama, "Crystal-structure change of GaAs and InAs whiskers from zincblende to wurtzite Type," Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, vol. 31, pp. 2061-2065, Jul 1992.
[8] X. H. Peng and A. Copple, "Origination of the direct-indirect band gap transition in strained wurtzite and zinc-blende GaAs nanowires: A first principles study," Physical Review B, vol. 87, Mar 14 2013.
[9] Z. J. Gu, M. P. Paranthaman, and Z. W. Pan, "Vapor-phase synthesis of gallium phosphide nanowires," Crystal Growth & Design, vol. 9, pp. 525-527, Jan 2009.
[10] S. Assali, I. Zardo, S. Plissard, D. Kriegner, M. A. Verheijen, G. Bauer, et al., "Direct band gap wurtzite gallium phosphide nanowires," Nano Letters, vol. 13, pp. 1559-1563, Apr 2013.
[11] R. Mohammad and Ş. Katırcıoğlu, "Structural and electronic properties of GaP nanowires," Physica E: Low-dimensional Systems and Nanostructures, vol. 73, pp. 213-219, 2015.
[12] 莊浩宇.陳東煌, "光電化學電池," 2009.
[13] A. Standing, S. Assali, L. Gao, M. A. Verheijen, D. van Dam, Y. Cui, et al., "Efficient water reduction with gallium phosphide nanowires," Nat Commun, vol. 6, p. 7824, 2015.
[14] J. H. Irving and J. G. Kirkwood, "The statistical mechanical theory of transport processes .4. The Equations of Hydrodynamics," Journal of Chemical Physics, vol. 18, pp. 817-829, 1950.
[15] J. E. Jones, "On the determinations of molecular fields - 1 From the variation of the viscosity of a gas with temperature," Proceedings of the Royal Society of London Series a-Containing Papers of a Mathematical and Physical Character, vol. 106, pp. 441-462, Oct 1924.
[16] J. E. Jones, "On the determination of molecular fields - II From the equation of state of a gas," Proceedings of the Royal Society of London Series a-Containing Papers of a Mathematical and Physical Character, vol. 106, pp. 463-477, Oct 1924.
[17] J. E. Jones, "On the determination of molecular fields III - From crystal measurements and kinetic theory data," Proceedings of the Royal Society of London Series a-Containing Papers of a Mathematical and Physical Character, vol. 106, pp. 709-718, Dec 1924.
[18] L. A. Girifalco and V. G. Weizer, "Application of the Morse potential function to cubic metals," Physical Review, vol. 114, pp. 687-690, 1959.
[19] M. S. Daw, S. M. Foiles, and M. I. Baskes, "The embedded-atom method - a review of theory and applications," Materials Science Reports, vol. 9, pp. 251-310, Mar 1993.
[20] F. Cleri and V. Rosato, "Tight-binding potentials for transition-metals and alloys," Physical Review B, vol. 48, pp. 22-33, Jul 1 1993.
[21] J. Tersoff, "New empirical-model for the structural-properties of silicon," Physical Review Letters, vol. 56, pp. 632-635, Feb 10 1986.
[22] J. Tersoff, "New empirical-approach for the structure and energy of covalent systems," Physical Review B, vol. 37, pp. 6991-7000, Apr 15 1988.
[23] J. Tersoff, "Empirical interatomic potential for silicon with improved elastic properties," Physical Review B, vol. 38, pp. 9902-9905, Nov 15 1988.
[24] J. Tersoff, "Modeling solid-state chemistry - Interatomic potentials for multicomponent systems," Physical Review B, vol. 39, pp. 5566-5568, Mar 15 1989.
[25] L. Verlet, "Computer experiments on classical fluids .I. Thermodynamical properties of Lennard-Jones molecules," Physical Review, vol. 159, pp. 98-+, 1967.
[26] B. Quentrec and C. Brot, "New method for searching for neighbors in molecular dynamics computations," Journal of Computational Physics, vol. 13, pp. 430-432, 1973.
[27] T. Iwaki, "Molecular dynamics study on stress-strain in very thin film (Size and location of region for defining stress and strain)," Jsme International Journal Series a-Mechanics and Material Engineering, vol. 39, pp. 346-353, Jul 1996.
[28] D. Powell, M. A. Migliorato, and A. G. Cullis, "Optimized Tersoff potential parameters for tetrahedrally bonded III-V semiconductors," Physical Review B, vol. 75, 2007.
[29] Z. Wang, X. Zu, L. Yang, F. Gao, and W. J. Weber, "Atomistic simulations of the size, orientation, and temperature dependence of tensile behavior in GaN nanowires," Physical Review B, vol. 76, 2007.