簡易檢索 / 詳目顯示

研究生: 方穆祥
Fang, Mu-Hsiang
論文名稱: 利用單頻差分演算法研究電離層電漿泡對GPS延遲量之影響
Investigation of the ionospheric plasma bubble effect to the GPS delay using a single frequency algorithm
指導教授: 林建宏
Lin, Charles
學位類別: 碩士
Master
系所名稱: 理學院 - 地球科學系
Department of Earth Sciences
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 61
中文關鍵詞: 全球導航衛星系統電離層電漿泡電離層延遲量卡爾曼濾波器LAMBDA法
外文關鍵詞: GPS, ionospheric delay, plasma irregularity, Kalman Filter, LAMBDA
相關次數: 點閱:100下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著全球導航衛星系統(global navigation satellite systems, GNSS)應用層面廣泛,改善導航定位因電離層延遲所產生的誤差愈顯重要。電離層為距離地表50公里至1000公里高度含有電漿帶電粒子的近地表太空環境,其電漿密度影響電波傳遞,造成GNSS電波訊號延遲。除了電離層電漿本身,電離層的不規則電漿結構,如電漿泡因對電波訊號產生散射,進而影響接收訊號強度。電漿泡的特徵為電漿空乏區,主要於黃昏至夜間生成。對於常態的電離層延遲,一般常利用衛星雙頻觀測量的線性組合,求解出電離層電漿密度產生的延遲量。但當電漿泡事件發生時,衛星訊號通過電漿泡邊界時,因其電子密度的劇烈變化,較低頻的訊號(如GPS的L2)較易受到電漿不規則體影響,訊號強度閃爍,常發生訊號失鎖(loss of lock)或週波脫落(cycle slip),導致無法完整連續觀測其電離層電漿泡於時空上的變化。

    本研究利用GPS單頻L1差分載波相位(carrier phase)與虛擬距離(pseudorange)之組合估計電離層的延遲量,嘗試觀測電離層電漿泡結構。在求解相位之周波未定值(Ambiguity)為本研究一重要之課題,應用卡爾曼濾波器(Kalman Filter)獲得粗估之一次差分周波未定值,再透過LAMBDA(Least square AMBiguity Decorrelation Adjustment)法搜尋出最佳整數解的周波未定值,將可求出準確且連續之電離層差分延遲量。更進一步分析其在空間的梯度變化,探討電漿泡形成演化過程中在時間和空間上的影響範圍。將有助於了解於電漿泡事件中,其電離層延遲量梯度變化,對於需要基準站之差分精密定位應用造成的影響。

    This thesis studies the ionosphere delay of the global positioning system (GPS) by utilizing the single difference (SD) measurements, which combines the single-frequency carrier phase and pseudorange to estimate the gradient of the ionospheric delay in between two ground-based receivers. As the methodology involves carrier phase observations, solving the phase ambiguity is important for the accuracy. The ambiguity is solved by applying Kalman filter for preliminary estimation followed by the well-known LAMBDA (Least square AMBiguity Decorrelation Adjustment) algorithm to approach the best integer solution. The developed algorithm is applied to 119 stations around Taiwan at the low latitude ionosphere where the electron density gradient due to that daytime equatorial ionization anomaly and evening plasma irregularities are actively affecting the positioning accuracy. We estimate the ionosphere gradient during a solar magnetic storm period and the plasma irregularity occurrence period in March 2015 along Taiwan to understand the impact of the ionosphere effect to the application of differential precision positioning that requires reference stations.

    中文摘要...I ABSTRACT...II 誌謝...VIII 目錄...X 表目錄...XII 圖目錄...XIII 第1章、 緒論...1 1.1 電離層簡介...1 1.2 電漿泡...2 1.3 電離層赤道異常...5 1.4 GPS系統簡介...9 1.5 雙頻量測電離層電子濃度之方法...12 1.6 研究動機與目的...15 第2章、 研究內容與方法...16 2.1 資料格式...16 2.2 單頻量測TEC之演算法...18 2.2.1 卡爾曼濾波器...18 2.2.2 電離層物理模型...21 2.2.3 觀測模型...21 2.2.4 LAMBDA 法...23 第3章、 結果與討論...25 3.1 雙頻TEC...25 3.2 大氣輝光儀觀測結果...26 3.3 ROTI MAP...27 3.4 單頻TEC...28 3.4.1 單頻與雙頻結果比較...32 3.4.2 南北向之基線長短比較...33 3.4.3 東西向之基線長短比較...38 3.4.4 全臺灣電離層電子濃度差值示意圖...42 3.4.5 事件天與寧靜天的比較...48 第4章、 結論...53 第5章、 未來應用與展望...55 5.1 定位誤差之應用...55 5.2 未來展望...58 參考文獻...60

    Klobuchar, J. (1987), Ionospheric Time-Delay Algorithms for Single-Frequency GPS Users, IEEE Transactions on Aerospace and Electronic Systems (3), pp. 325-331.

    Teunissen, P.J.G. (1993), Least-squares estimation of the integer GPS ambiguities, LGR series no 6. Delft Geodetic Computing Centre.

    Sardón, E., Rius, A., and Zarraoa, N. (1994), Estimation of the transmitter and receiver differential biases and the ionospheric total electron content from Global Positioning System observations, Radio Sci., 29( 3), 577– 586, doi:10.1029/94RS00449.

    Teunissen PJG (1995), The Least-Squares Ambiguity Decorrelation Adjustment: A Method for Fast GPS Integer Ambiguity Estimation, Journal of Geodesy, Vol. 70, 65-82.

    Pi, X., A. J. Mannucci, U. J. Lindqwister, and C. M. Ho (1997), Monitoring of Global Ionospheric Irregularities Using the Worldwide GPS Network, Geophys. Res. Lett. 24, 2283–2286.

    Takasu, T., and A.Yasuda (2018), RTKLIB: An open source program package for GNSS positioning, Available from: http://www.rtklib.com

    Kelley, M. C. (2009), The Earth’s Ionosphere Plasma Physics and Electrodynamics, 2nd Edition, Boston.

    Fujita S, Yoshihara T and Saito S (2010), Determination of Ionosphere Gradient in Short Baselines by Using Single Frequency Measurements, Journal of Aeronautics, Astronautics and Aviation, Series A, Vol. 42, No. 4, 269-275.

    Tomoji Takasu, Akio Yasuda (2010), Kalman-Filter-Based Integer Ambiguity Resolution Strategy for Long-Baseline RTK with Ionosphere and Troposphere Estimation, Tokyo University of Marine Science and Technology, Japan.

    Michael J. Dunn (2013), IS-GPS-200H Global Positioning Systems Directorate Systems Engineering & Integration: Interface Specification IS-GPS-200 Navstar GPS Space Segment/Navigation User Interfaces.

    Jacobsen, K. S., (2014), The impact of different sampling rates and calculation time intervals on ROTI values, J Sp Weather Sp Clim 4:A33. doi:10.1051/swsc/2014031

    Bilitza, D., Altadill, D., Truhlik, V., Shubin, V., Galkin, I., Reinisch, B., and Huang, X. (2017), International Reference Ionosphere 2016: From ionospheric climate to real‐time weather predictions, Space Weather, 15, 418– 429, doi:10.1002/2016SW001593.

    Rajesh, P. K., C. H. Lin, C. H. Chen, J. T. Lin, T. Matsuo, M. Y. Chou, W. H. Chen, M. T. Chang and C. F. You (2017), Equatorial plasma bubble generation/inhibition during 2015 St. Patrick’s Day storm, Space Weather, 15, doi:10.1002/2017SW001641

    蔡和芳(1999), 全球定位系統觀測電離層赤道異常之研究, 國立中央大學太空科學研究所博士論文

    下載圖示 校內:2024-09-01公開
    校外:2024-09-01公開
    QR CODE