| 研究生: |
陳昭榮 Chen, Jhao-Rong |
|---|---|
| 論文名稱: |
鈣循環與化學迴路的反應器系統之建模、分析及其應用 Modelling and Analysis of Calcium and Chemical Looping Reactor Systems and Their Application. |
| 指導教授: |
吳煒
Wu, Wei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 123 |
| 中文關鍵詞: | 鈣循環 、化學迴路 、產氫 、二氧化碳捕獲 、Matlab 、Aspen Plus® |
| 外文關鍵詞: | Calcium Looping, Chemical Looping, Wabash River Coal Gasification Project, Matlab, Aspen Plus® |
| 相關次數: | 點閱:95 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究之目的是將二氧化碳在化工廠內捕獲並高壓液化封存,並產生乾淨的氫氣與電力提供給大眾社會使用,以減少二氧化碳排放,因此使用鈣循環與化學迴路系統做為本研究捕碳產氫的製程。
本研究以快速流體化床與逆流式移動床為基礎,透過Matlab建立鈣循環與化學迴路反應器之數學模型,並分析最適化其模擬結果。且以J. C. Abanades以及L. S. Fan的文獻加以驗證。
模擬結果顯示,鈣循環透過氧化鈣在快速流體化床內循環操作,能捕獲工廠尾氣超過70%的二氧化碳,也能在合成氣的進料中生產將近兩倍的氫氣;而化學迴路能以載氧體氧化還原的方式捕獲二氧化碳並生產純度接近100%的氫氣。
本研究亦結合Matlab的模型與Aspen plus®的流程模擬,模擬鈣循環與化學迴路個別應用在沃巴什河煤氣化電廠內的狀況。其結果顯示此二種製程皆能捕獲二氧化碳,並生產氫氣。而化學迴路在電廠內能有較高的熱效率或氫氣品質;鈣循環有較高的操作彈性與負荷,就能使用在高產量的工廠內。各工廠能參考本研究之模擬結果,根據實際的操作狀況,選擇適合的系統應用在工廠內。
In order to lower down the CO2 emission without reducing the energy suppling, CO2 Capture and Storage in the plant, clean energy production such as Hydrogen and electricity are the main focus and principle of this study. As a result, Calcium and Chemical Looping systems are introduced in this study.
This study is based on the Fast Fluidized Bed and Countercurrent Moving Bed mathematical models built by Matlab. The simulation, analysis and optimization of Calcium and Chemical Looping are also being discussed. These models are also validated by J. C. Abanades and L. S. Fan’s previous work.
The results show that Calcium Looping could circulate CaO particles in two fast fluidized bed to capture more than 70% CO2 from tail gas and generate almost twice Hydrogen from Syngas inlet; Chemical Looping could use Oxygen carrier to fully oxide the Syngas and reduce H2O to produce almost 100% pure Hydrogen.
This study also used Aspen Plus® to simulate the application of these two systems in coal gasification power plant. The results show that Chemical Looping has higher purity Hydrogen production and heat efficiency, and Calcium Looping has more operating tolerance and capacity, which is suitable to be installed in large production plant. People could consider the operating condition and take this as reference to choose the most suitable system for their plants.
[1] O. o. F. ENERGY, “Energy.Gov Office of Fossil Energy,” 1000 Independence Avenue, SW Washington, DC 20585.
[2] 徐. 柳萬霞, 黃欽銘, 陳威丞, 歐陽湘, “燃燒後捕獲二氧化碳技術-鈣迴路捕獲CO2 技術國際現況與國內發展介紹,” 工業污染防治, vol. 121, pp. 16, 2012.
[3] M.-W. Yang, “Application of Carbon Capture and Storage Technology for Power Industry,” 2017.
[4] L. Zeng, F. He, F. X. Li, and L. S. Fan, “Coal-Direct Chemical Looping Gasification for Hydrogen Production: Reactor Modeling and Process Simulation,” Energy & Fuels, vol. 26, no. 6, pp. 3680-3690, Jun, 2012.
[5] G. F. Versteeg, L. A. J. Van Dijck, and W. P. M. Van Swaaij, “On the kinetics between CO2 and alkanolamines both in aqueous and non-aqueous solutions. An overview,” Chemical Engineering Communications, vol. 144, pp. 113-158, 1996.
[6] A. MacKenzie, D. L. Granatstein, E. J. Anthony, and J. C. Abanades, “Economics of CO2 capture using the calcium cycle with a pressurized fluidized bed combustor,” Energy & Fuels, vol. 21, no. 2, pp. 920-926, Mar-Apr, 2007.
[7] N. Susarla, R. Haghpanah, I. Karimi, S. Farooq, A. Rajendran, L. S. C. Tan, and J. S. T. Lim, “Energy and cost estimates for capturing CO 2 from a dry flue gas using pressure/vacuum swing adsorption,” Chemical Engineering Research and Design, vol. 102, pp. 354-367, 2015.
[8] A. Charitos, C. Hawthorne, A. Bidwe, L. Korovesis, A. Schuster, and G. Scheffknecht, “Hydrodynamic analysis of a 10kW th Calcium Looping Dual Fluidized Bed for post-combustion CO 2 capture,” Powder Technology, vol. 200, no. 3, pp. 117-127, 2010.
[9] J. C. Abanades, E. J. Anthony, D. Y. Lu, C. Salvador, and D. Alvarez, “Capture of CO2 from combustion gases in a fluidized bed of CaO,” AIChE Journal, vol. 50, no. 7, pp. 1614-1622, 2004.
[10] J. C. Abanades, M. Alonso, N. Rodríguez, B. González, G. Grasa, and R. Murillo, “Capturing CO2 from combustion flue gases with a carbonation calcination loop. Experimental results and process development,” Energy Procedia, vol. 1, no. 1, pp. 1147-1154, 2009.
[11] G. Grasa, I. Martínez, M. Diego, and J. Abanades, “Determination of CaO carbonation kinetics under recarbonation conditions,” Energy & Fuels, vol. 28, no. 6, pp. 4033-4042, 2014.
[12] P. Basu, “Combustion of coal in circulating fluidized-bed boilers: a review,” Chemical Engineering Science, vol. 54, no. 22, pp. 5547-5557, 1999.
[13] F. Berruti, T. Pugsley, L. Godfroy, J. Chaouki, and G. Patience, “Hydrodynamics of circulating fluidized bed risers: a review,” The Canadian Journal of Chemical Engineering, vol. 73, no. 5, pp. 579-602, 1995.
[14] W.-c. Yang, Handbook of fluidization and fluid-particle systems: CRC press, 2003.
[15] J. R. Grace, T. Knowlton, and A. Avidan, Circulating fluidized beds: Springer Science & Business Media, 2012.
[16] D. Kunii, and O. Levenspiel, “Circulating fluidized-bed reactors,” Chemical Engineering Science, vol. 52, no. 15, pp. 2471-2482, 1997.
[17] D. Santana, J. Rodrıguez, and A. Macıas-Machın, “Modelling fluidized bed elutriation of fine particles,” Powder technology, vol. 106, no. 1, pp. 110-118, 1999.
[18] M. Colakyan, and O. Levenspiel, “Elutriation from fluidized beds,” Powder Technology, vol. 38, no. 3, pp. 223-232, 1984.
[19] W. J, and J. Wein, “Expansion behavior of gas fluidized beds in the turbulent regime,” AIChE Symp,Ser,, vol. 301, no. 90, pp. 31-44, 1994.
[20] D. Kunii, and O. Levenspiel, “Fluidized reactor models. 1. For bubbling beds of fine, intermediate, and large particles. 2. For the lean phase: freeboard and fast fluidization,” Industrial & engineering chemistry research, vol. 29, no. 7, pp. 1226-1234, 1990.
[21] A.-H. Lu, and G.-P. Hao, “Porous materials for carbon dioxide capture,” Annual Reports Section" A"(Inorganic Chemistry), vol. 109, pp. 484-503, 2013.
[22] P. Sun, J. R. Grace, C. J. Lim, and E. J. Anthony, “Determination of intrinsic rate constants of the CaO–CO 2 reaction,” Chemical Engineering Science, vol. 63, no. 1, pp. 47-56, 2008.
[23] E. Baker, “87. The calcium oxide–carbon dioxide system in the pressure range 1—300 atmospheres,” Journal of the Chemical Society (Resumed), pp. 464-470, 1962.
[24] N. Rodríguez, M. Alonso, and J. Abanades, “Experimental investigation of a circulating fluidized‐bed reactor to capture CO2 with CaO,” AIChE Journal, vol. 57, no. 5, pp. 1356-1366, 2011.
[25] C. R. Müller, R. Pacciani, C. D. Bohn, S. A. Scott, and J. S. Dennis, “Investigation of the enhanced water gas shift reaction using natural and synthetic sorbents for the capture of CO2,” Industrial & Engineering Chemistry Research, vol. 48, no. 23, pp. 10284-10291, 2009.
[26] J. Xu, and G. F. Froment, “Methane steam reforming, methanation and water‐gas shift: I. Intrinsic kinetics,” AIChE Journal, vol. 35, no. 1, pp. 88-96, 1989.
[27] I. Gasification, and C. C. P. Plant, “The Wabash River Coal Gasification Repowering Project,” 2000.
[28] A. Tong, D. Sridhar, Z. Sun, H. R. Kim, L. Zeng, F. Wang, D. Wang, M. V. Kathe, S. Luo, and Y. Sun, “Continuous high purity hydrogen generation from a syngas chemical looping 25kW th sub-pilot unit with 100% carbon capture,” Fuel, vol. 103, pp. 495-505, 2013.
[29] S. Gasior, A. Forney, J. Field, D. Bienstock, and H. Benson, “Production of Synthesis Gas and Hydrogen by the Steam-Iron Process,” Bureau of Mines Report of Investigation, vol. 5911, 1961.
[30] S. Gasior, A. Forney, J. Field, D. Bienstock, and H. Benson, “Production of Synthesis Gas and Hydrogen by the Steam-Iron Process,” Washington, DC: US Department of the Interior, Bureau of Mines, 1961.
[31] C. H. Berg, and H. C. Reed, "Hydrogen process," Google Patents, 1953.
[32] D. Sridhar, A. Tong, H. Kim, L. Zeng, F. Li, and L.-S. Fan, “Syngas chemical looping process: design and construction of a 25 kWth subpilot unit,” Energy & Fuels, vol. 26, no. 4, pp. 2292-2302, 2012.
[33] F. Li, L. Zeng, L. G. Velazquez‐Vargas, Z. Yoscovits, and L. S. Fan, “Syngas chemical looping gasification process: Bench‐scale studies and reactor simulations,” AIChE journal, vol. 56, no. 8, pp. 2186-2199, 2010.
[34] K. Liu, C. Song, and V. Subramani, Hydrogen and syngas production and purification technologies: John Wiley & Sons, 2009.
[35] 工業研究院 綠能與環境研究所 沈政憲 經理 提供, 2017.
[36] P. Gupta, L. G. Velazquez-Vargas, C. Valentine, and L.-S. Fan, “Moving bed reactor setup to study complex gas-solid reactions,” Review of Scientific Instruments, vol. 78, no. 8, pp. 085106, 2007.
[37] E. A. Foumeny, M. A. Chowdhury, C. McGreavy, and J. A. Castro, “Estimation of dispersion coefficients in packed beds,” Chemical engineering & technology, vol. 15, no. 3, pp. 168-181, 1992.
[38] D. ALTSHULLER, “Design equations and transient behaviour of the counter-current moving bed chromatographic reactor,” Chemical Engineering Communications, vol. 19, no. 4-6, pp. 363-375, 1983.
[39] H. Baolin, H. ZHANG, L. Hongzhong, and Z. Qingshan, “Study on kinetics of iron oxide reduction by hydrogen,” Chinese Journal of Chemical Engineering, vol. 20, no. 1, pp. 10-17, 2012.
[40] “ENERGY.COV-Office of FOSSIL ENERGY-Clean Coal Research-Gasification.”
[41] T. Wang, and G. Stiegel, “Integrated Gasification Combined Cycle (IGCC) Technologies (1st Edition),” 2016.
[42] A. Ong'Iro, V. Ugursal, A. Al Taweel, and D. Blamire, “Simulation of combined cycle power plants using the ASPEN PLUS shell,” Heat Recovery Systems and CHP, vol. 15, no. 2, pp. 105-113, 1995.
[43] N. P. Padture, M. Gell, and E. H. Jordan, “Thermal barrier coatings for gas-turbine engine applications,” Science, vol. 296, no. 5566, pp. 280-284, 2002.
[44] J. M. Robles, “Simulation of a Gas Power Plant.”
[45] V. Ganapathy, Industrial boilers and heat recovery steam generators: design, applications, and calculations: CRC Press, 2002.
[46] C. Casarosa, F. Donatini, and A. Franco, “Thermoeconomic optimization of heat recovery steam generators operating parameters for combined plants,” Energy, vol. 29, no. 3, pp. 389-414, 2004.
[47] R. Cornelissen, and G. Hirs, “Exergy analysis of cryogenic air separation,” Energy Conversion and Management, vol. 39, no. 16, pp. 1821-1826, 1998.
[48] L. Zhu, Z. Zhang, J. Fan, and P. Jiang, “Polygeneration of hydrogen and power based on coal gasification integrated with a dual chemical looping process: thermodynamic investigation,” Computers & Chemical Engineering, vol. 84, pp. 302-312, 2016.
[49] K. Shah, B. Moghtaderi, J. Zanganeh, and T. Wall, “Integration options for novel chemical looping air separation (ICLAS) process for oxygen production in oxy-fuel coal fired power plants,” Fuel, vol. 107, pp. 356-370, 2013.
[50] K. Shah, B. Moghtaderi, and T. Wall, “Selection of suitable oxygen carriers for chemical looping air separation: a thermodynamic approach,” Energy & Fuels, vol. 26, no. 4, pp. 2038-2045, 2012.
[51] A. Plus, "Getting started modeling processes with solids," Aspen Technology, Inc, 2000.