| 研究生: |
吳品侖 Wu, Pin-Lun |
|---|---|
| 論文名稱: |
利用流體化床均質顆粒化技術以碳酸-溶氧去除水溶液中亞鐵之研究 Study on the Treatment of Ferrous Solution in the Presence of Carbonate and Dissolved Oxygen by Fluidized-Bed Homogeneous Granulation(FBHG) |
| 指導教授: |
黃耀輝
Huang, Yao-Hui |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 90 |
| 中文關鍵詞: | 亞鐵 、溶氧 、過氧化氫 、流體化床均質化顆粒(FBHG) 、鐵氧化物 |
| 外文關鍵詞: | Ferrous ion, Dissolved oxygen, Hydrogen peroxide, FBHG, Iron oxide |
| 相關次數: | 點閱:101 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以碳酸-溶氧進料系統處理濃度為1.25 mM至5 mM亞鐵廢水並合成α-FeOOH。
於瓶杯實驗中發現,在無碳酸僅含溶氧的系統中,於酸性條件形成γ-FeOOH,而在鹼性環境則生成Fe3O4。在含碳酸曝氮氣系統中,因曝氣使得碳酸受氣提作用逸散,溶液也處於低溶氧狀態,產物先於酸性條件形成γ-FeOOH,後與溶液中未氧化的亞鐵反應,最終轉變為Fe3O4。在碳酸-溶氧共存的系統中,於弱酸性至中性(pH 6~7)環境下,生成α-FeOOH與γ-FeOOH混合物,而在鹼性環境中,同樣生成Fe3O4;而在探討[CO32-]/[Fe2+]莫爾比對系統的影響時,因瓶杯實驗係屬開放式系統,發現額外添加的碳酸會與大氣二氧化碳平衡而逸散,使得產物同樣為α-FeOOH與γ-FeOOH混合物。瓶杯實驗溶液中溶氧不足需3小時才能完全氧化亞鐵,另ORP電位可做為亞鐵氧化反應的指標性因子。
後續利用Fenton流體化床(FBR-Fenton)均質化顆粒處理亞鐵廢水並生成鐵氧化物,於碳酸-溶氧進料系統中發現,pHeff大於6時,鐵去除率與結晶率,分別達到96.7%及65.9%,顯示此系統應操作在pHeff 6以上。在較低截面負荷(小於3.21 kg-Fe/m2•h)時,鐵去除率可達80~90%,而結晶率則介於50~65%,當截面負荷上升,因溶氧的不足,鐵去除率與結晶率大幅降低至31.7%與20.4%,故系統最高負荷約在3.21 kg-Fe/m2•h。由於碳酸-溶氧進料系統溶氧不足,故接下來在碳酸溶夜中加入氧化劑過氧化氫,形成碳酸-過氧化氫進料系統,研究發現,故當[H2O2]/[Fe2+]莫爾比提升至0.5~0.9時,鐵去除率與結晶率分別達98.5%及78.5%。碳酸-過氧化氫進料系統截面負荷約在2.41 ~ 3.21 kg-Fe/m2•hr。比較上述兩個系統,碳酸-溶氧進料系統受限於溶液中溶氧供應不足,鐵去除率遠低於碳酸-過氧化氫進料系統,但碳酸-過氧化氫進料系統因沉澱驅動力過強,致使鐵結晶率低於碳酸-溶氧進料系統。
This study aimed to treat the wastewater with 1.25 mM to 5 mM of ferrous ions with carbonate and oxygen to form goethite.
Jar-test results showed that γ-FeOOH was formed at acidic pH, whereas Fe3O4 was generated at basic pH in the absence of carbonate ions. γ-FeOOH was produced at the beginning and then reacted with ferrous ions to form Fe3O4 with the aeration of nitrogen. A mixture of α-FeOOH and γ-FeOOH was synthesized at weakly acid pH in the presence of carbonate and dissolved oxygen. Emission of carbon dioxide and insufficiency of dissolved oxygen are main obstacles to completely oxidize ferrous ions. Besides, ORP could be an indicator of the extent of ferrous oxidization.
In FBHG, when pHeff was higher than 6, the iron removal and iron crystallization ratio in carbonate-dissolved oxygen system could achieve 96.7% and 65.9%, respectively. With 3.21 kg-Fe/m2•h of actual surface loading, the iron removal and iron crystallization ratio could reach 80~90% and 50~65%, respectively. In order to provide sufficient oxidant, hydrogen peroxide was applied in this study. The results indicated that when [H2O2]/[Fe2+] increased from 0.5 to 0.9, the iron removal and iron crystallization ratio could achieve 98.5% and 78.5%, respectively. In carbonate-hydrogen peroxide system, the actual surface loading was in the range of 2.41~3.21 kg-Fe/m2•hr. The iron removal of carbonate-hydrogen peroxide system was higher owing to efficient oxidation of ferrous ions, while iron crystallization ratio of carbonate-dissolved oxygen system was higher because of intense driving force for precipitation.
1. Turekian, K.K. and K.H. Wedepohl, Distribution of the elements in some major units of the earth's crust. Geological Society of America Bulletin, 1961. 72(2): p. 175-192.
2. Tingjie Wang, Yong Jin, Zhanwen Wang, Zhiqing Yu, A study of the morphology of the goethite crystallization process. Chemical Engineering Journal, 1998. 69(1): p. 1-5.
3. Sato, H. and 佐藤創, The Iron and Steel Industry in Asia: Development and Restructuring. 2009.
4. Potter, M.J., Iron oxide pigments. Journal, v, 1994. 78(32): p. 43-46.
5. Cornell, R.M. and U. Schwertmann, The iron oxides: structure, properties, reactions, occurrences and uses. 2003: John Wiley & Sons.
6. Snowden, R. and B. Wheeler, Iron toxicity to fen plant species. Journal of Ecology, 1993: p. 35-46.
7. CANN, H.M. and H.L. VERHULST, Accidental poisoning in young children—the hazards of iron medication. AMA journal of diseases of children, 1960. 99(5): p. 688-691.
8. Snoeyink, V.L. and D. Jenkins, Water chemistry. 1980: John Wiley.
9. Stumm, W. and G.F. Lee, Oxygenation of ferrous iron. Industrial & Engineering Chemistry, 1961. 53(2): p. 143-146.
10. Stumm, W. and J.J. Morgan, Aquatic chemistry: chemical equilibria and rates in natural waters. Vol. 126. 2012: John Wiley & Sons.
11. Cundy, A.B., L. Hopkinson, and R.L. Whitby, Use of iron-based technologies in contaminated land and groundwater remediation: A review. Science of The Total Environment, 2008. 400(1): p. 42-51.
12. Fenton, H.J.H., Oxidation of tartaric acid in presence of iron. Journal of the Chemical Society, Transactions, 1894. 65: p. 899.
13. Haber, F. and J. Weiss, The catalytic decomposition of hydrogen peroxide by iron salts. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1934. 147(861): p. 332-351.
14. Wei Jianga, Jitao Lv, Lei Luo, Kun Yang, Yongfeng Lin, Fanbao Hu, Jing Zhang, Shuzhen Zhang, Arsenate and cadmium co-adsorption and co-precipitation on goethite. Journal of Hazardous Materials, 2013. 262: p. 55-63.
15. ShiYong Wei, WenFeng Tan, Fan Liu, Wei Zhao, LiPing Weng, Surface properties and phosphate adsorption of binary systems containing goethite and kaolinite. Geoderma, 2014. 213(0): p. 478-484.
16. Hiemstra, T. and W. Van Riemsdijk, Fluoride adsorption on goethite in relation to different types of surface sites. Journal of colloid and interface science, 2000. 225(1): p. 94-104.
17. Liou, M.-J. and M.-C. Lu, Catalytic degradation of explosives with goethite and hydrogen peroxide. Journal of Hazardous Materials, 2008. 151(2): p. 540-546.
18. 李正得, 不同擔體表面處理程序對氧化鐵覆膜催化效能之影響,國立交通大學碩士論文. 2001.
19. Mustafa, G., B. Singh, and R.S. Kookana, Cadmium adsorption and desorption behaviour on goethite at low equilibrium concentrations: effects of pH and index cations. Chemosphere, 2004. 57(10): p. 1325-1333.
20. Das, S., M.J. Hendry, and J. Essilfie-Dughan, Transformation of two-line ferrihydrite to goethite and hematite as a function of pH and temperature. Environmental Science & Technology, 2010. 45(1): p. 268-275.
21. Françoise Gilbert, Philippe Refait, François Lévêque, Céline Remazeilles, Egle Conforto, Synthesis of goethite from Fe(OH)2 precipitates: Influence of Fe (II) concentration and stirring speed. Journal of Physics and Chemistry of Solids, 2008. 69(8): p. 2124-2130.
22. King, D.W., Role of Carbonate Speciation on the Oxidation Rate of Fe(II) in Aquatic Systems. Environmental Science & Technology, 1998. 32(19): p. 2997-3003.
23. Carlson, L. and U. Schwertmann, The effect of CO2 and oxidation rate on the formation of goethite versus lepidocrocite from an Fe (II) system at pH 6 and 7. Clay Miner, 1990. 25: p. 65-71.
24. M. Usman, M. Abdelmoula, P. Faure, C. Ruby, K. Hanna, Transformation of various kinds of goethite into magnetite: Effect of chemical and surface properties. Geoderma, 2013. 197–198(0): p. 9-16.
25. Ph. Refait, M. Reffass, J. Landoulsi, R. Sabot, M. Jeannin, Role of phosphate species during the formation and transformation of the Fe (II–III) hydroxycarbonate green rust. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007. 299(1): p. 29-37.
26. J.A. Mejía Gómez, V.G de Resende, J. Antonissen, E. De Grave, Characterization of the effects of silicon on the formation of goethite. Corrosion Science, 2011. 53(5): p. 1756-1761.
27. Xiaoming Wang, Fan Liu, Wenfeng Tan, Xionghan Feng, Luuk K. Koopal, Transformation of hydroxycarbonate green rust into crystalline iron (hydr) oxides: Influences of reaction conditions and underlying mechanisms. Chemical Geology, 2013. 351: p. 57-65.
28. Jean-Marie R. Génin, Christian Ruby, Antoine Géhin, Philippe Refait, Synthesis of green rusts by oxidation of Fe(OH)2, their products of oxidation and reduction of ferric oxyhydroxides; Eh–pH Pourbaix diagrams. Comptes Rendus Geoscience, 2006. 338(6): p. 433-446.
29. Schwertmann, U., Cornell RM Iron oxides in the laboratory. 2000, Wiley.
30. Glasauer, S., H. Doner, and A. Gehring, Adsorption of selenite to goethite in a flow‐through reaction chamber. European journal of soil science, 1995. 46(1): p. 47-52.
31. Cornell, R.M. and W. Schneider, Formation of goethite from ferrihydrite at physiological pH under the influence of cysteine. Polyhedron, 1989. 8(2): p. 149-155.
32. Ardizzone, S. and M. Sarti, Dehydration, rehydration with reconstruction of oxide surfaces exposed to high temperatures. Materials chemistry and physics, 1991. 28(2): p. 191-198.
33. Van der Woude, J., J. Rijnbout, and P. De Bruyn, Formation of colloidal dispersions from supersaturated iron (III) nitrate solutions. IV. Analysis of slow flocculation of goethite. Colloids and surfaces, 1984. 11(3): p. 391-400.
34. Duvigneaud, P.-H. and R. Derie, Shape effects on crystallite size distributions in synthetic hematites from X-ray line-profile analysis. Journal of Solid State Chemistry, 1980. 34(3): p. 323-333.
35. Atkinson, R., The formation of iron (III) oxide hydroxides from iron (II) oxalate. Australian Journal of Chemistry, 1976. 29(10): p. 2149-2158.
36. Schwertmann, U., The transformation of lepidocrocite to goethite. Clays and Clay Minerals, 1972. 20: p. 151-158.
37. Atkinson, R.J., A.M. Posner, and J.P. Quirk, Crystal nucleation in Fe(III) solutions and hydroxide gels. Journal of Inorganic and Nuclear Chemistry, 1968. 30(9): p. 2371-2381.
38. Healy, T.W. and V.K. La Mer, The energetics of flocculation and redispersion by polymers. Journal of Colloid Science, 1964. 19(4): p. 323-332.
39. Schenkel, J. and J. Kitchener, A test of the Derjaguin-Verwey-Overbeek theory with a colloidal suspension. Transactions of the Faraday Society, 1960. 56: p. 161-173.
40. 吳俊毅, 陳偉聖, 申永輝, 蔡敏行, 廢酸洗液循環再利用之技術探討. 鑛冶: 中國鑛冶工程學會會刊, 2012(220): p. 16-26.
41. Regel-Rosocka, M., A review on methods of regeneration of spent pickling solutions from steel processing. Journal of Hazardous Materials, 2010. 177(1–3): p. 57-69.
42. 葉和明, 輸送現象與單元操作. 2006: 三民.
43. Werther, J., Fluidized-Bed Reactors, in Ullmann's Encyclopedia of Industrial Chemistry. 2000, Wiley-VCH Verlag GmbH & Co. KGaA.
44. Harris, G.B., Omelon, S.J., Solid/liquid separation: including hydrometallurgy and the environment : proceedings of the International Symposium on Solid/Liquid Separation. 1999: Canadian Institute of Mining, Metallurgy and Petroleum.
45. Yang, C.-J., The Study of Phosphorus Recovery from WWTP by Fluid-Bed Crystallization of Calcium Phosphate. 2013.
46. Ohlinger, K.N., T.M. Young, and E.D. Schroeder, Postdigestion struvite precipitation using a fluidized bed reactor. Journal of Environmental Engineering, 2000. 126(4): p. 361-368.
47. 張華強, 以流體化床反應器開發均相成核與結晶之新穎除磷技術. 成功大學化學工程學系學位論文, 2012: p. 1-107.
48. 劉志忠, 流體化床結晶法去除水中磷酸鹽之研究,碩士論文,國立中央大學環境工程研究所. 1997.
49. Dirksen, J. and T. Ring, Fundamentals of crystallization: kinetic effects on particle size distributions and morphology. Chemical Engineering Science, 1991. 46(10): p. 2389-2427.
50. Jayalakshmi, M. and V. Muralidharan, Passivation of iron in alkaline carbonate solutions. Journal of Power Sources, 1991. 35(2): p. 131-142.
51. Gomathi Devi, L., et al., Photo degradation of Methyl Orange an azo dye by Advanced Fenton Process using zero valent metallic iron: Influence of various reaction parameters and its degradation mechanism. Journal of Hazardous Materials, 2009. 164(2-3): p. 459-467.
校內:2019-08-21公開