| 研究生: |
吳克承 Wu, Ke-Cheng |
|---|---|
| 論文名稱: |
光纖耦合準直透鏡於混合型太陽能照明系統之設計 Design and Simulation of Fiber Optic Collimating Lens for Hybrid Solar Lighting System |
| 指導教授: |
沈聖智
Shen, Sheng-Chih |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 系統及船舶機電工程學系 Department of Systems and Naval Mechatronic Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 94 |
| 中文關鍵詞: | 太陽能集光器 、非成像光學 、太陽能混光系統 、光纖導光 |
| 外文關鍵詞: | Solar Concentrator, Nonimaging Optics, Hybrid Solar Lighting, Fiber Optic Light Guide |
| 相關次數: | 點閱:140 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究係利用光學共焦原理設計新型太陽能集光器,本文依其功能稱之為「光纖耦合準直透鏡」,利用所設計之新型集光器及其對應之LED人工光源模組來建構混合型太陽能照明系統,以提供室內、實驗室、或防爆區域等安全照明。混合型太陽能照明系統分為三大部分:太陽能照明系統、LED人工光源照明系統、回饋控制系統。太陽能照明系統利用太陽能集光器(Solar Concentrator)和追日機構將太陽光引入光纖束,利用光纖可撓曲之性質,將光導引至無法自然採光或其他需要照明之場所。同時在黑夜或陰天日照不足時,回饋控制系統將主動啟動LED光源模組,並同樣透過光纖束將LED光導引至目標場所,以混合光源的形式滿足照明需求。其中,混合型太陽能照明系統效能之關鍵在於光纖耦合技術,一般集光器均為太陽能電池設計,其功能常無法滿足與光纖波導耦合之條件而造成傳輸效率不彰,故本文根據光纖規格設計新型之光纖耦合準直透鏡,利用幾何光學共焦原理將入射光聚集於共焦點,再以相同曲面之透鏡表面將光束縮小後發出,使光線能平行與光纖耦合,增加光纖抗彎曲損失能力以提升傳輸效率;同時設計相對應之LED準光器(LED Collimator),將LED原本之配光型式修正為平行出光,使LED同樣能透過集光器來提高與光纖之耦合能力,接著由控制系統根據光感測元件提供之光強度訊號來調控LED以確保整體系統光輸出之穩定性。最後於模擬設計外亦針對元件及系統進行實驗量測評估,以提高系統模型架構之可行性及完整性。
This article has designed a novel solar concentrator and LED collimator and built the model by combining CAD with ray-tracing software which is used in nonimaging optical simulation. The combination of the solar concentrator, optical fibers ,and the sun tracking system helps to guide the solar light to the areas where need the illumination. In dark night or insufficiency of sun radiance, the active central control system would start the artificial light source, usually high-effective LED, to compensate the indoor illminance, with optical fiber light guide as well. The key factor that plays an important role and has effect on total efficiency of active optical fiber coupled hybrid lighting system is the technique of optical fiber coupling. Therefore, we has designed a novel solar concentrator, or also called fiber-coupled collimator lens in this article, which is base on the specifications of the optical fiber. We put the fiber material properties in our design parameters in order to increase the light transmission efficiency in the optical fiber. The concentrator is divided into three parts: primary part, secondary part, and central aspheric surface. By using geometric optics we can obtain contours of the concentrator analytically, and use CAD to build the rotationally symmetric model. Traditional convex lens concentrator and the parabolic concentrator have been built in the same way by referring predecessors for comparison with our design. Eventually, our research has also designed a LED collimator to allow the artificial light source can also apply to our concentrator.
【1】 R. Winston, J.C. Minano and P. Benitez, “Nonimaging Optics,” Elsevier Academic Press, pp. 1-217, 2005.
【2】 F. Muhammad-Sukki, R. Ramirez-Iniguez, S.G. McMeekin, B.G. Stewart and B. Clive, “Solar Concentrators,” International Journal of Applied Sciences(IJAS), Volume 1, Issue 1, 2010.
【3】 W. Guter, J. Schöne, S.P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A.W. Bett, and Frank Dimroth, “Current-Matched Triple-Junction Solar Cell Reaching 41.1% Conversion Efficiency Under Concentrated Sunlight,” Applied Physics Letter, 94, 22, 2009.
【4】 T. Nakamura, “Optical Waveguide System for Solar Power Applications in Space,” Nonimaging Optics: Efficient Design for Illumination and Solar Concentration VI., Proceedings of the SPIE, Volume 7423, pp. 74230C-74230C-10 , 2009.
【5】 D. Feuermamn, J.M. Gordon and M. Huleihil, “Solar Fiber-Optic Mini-Dish Concentrators: First Experimental Results and Field Experiments,” Solar Energy Vol. 72, No. 6, pp. 459-472, 2002.
【6】 N. Ostroumov, J.M. Gordon and D. Feuermann, “Panorama of dual-mirror aplanats for maximum concentration,” Applied Optics, Vol. 48, No. 26, Sep. 10, 2009.
【7】 J.M. Gordon, D. Feuermann and Pete Young, “Unfolded aplanats for high-concentration photovoltaics,” Optics Letters, Vol. 33, No. 10, May 15, 2008.
【8】 X. Ning, R. Winston and J. O'Gallagher, “Dielectric totally internally reflecting concentrators,” Applied Optics, Vol. 26, No. 2, 15 January, 1987.
【9】 R. Ramirez-Iniguez and R.J. Green, “Optical antenna design for indoor optical wireless communication systems,” International Journal of Communication Systems, 18:229-245, 2005.
【10】 駱志龍,“Fresnel 透鏡設計及應用”,國立中央大學光電科學研究所,碩士論文,2001。
【11】 R. Leutz, A. Suzuki, A. Akisawa and T. Kashiwagi, “Nonimaging Fresnel Lens Concentrator the Prototype,” Proceedings of the First International Power and Energy Conference, 1999.
【12】 R. Leutz and A. Suzuki, “Nonimaging Fresnel Lenses: Design and Performance of Solar Concentrators,” Springer Verlag, Heidelberg, 2001.
【13】 R. Leutz, A. Suzuki, A. Akisawa and T. Kashiwagi, “Developments and Designs of Solar Engineering Fresnel Lenses,” Proceedings Symposium on Energy Engineering, vol. 2, pp. 759-765, 2000.
【14】 R. Leutz, A. Suzuki, A. Akisawa and T. Kashiwagi, “Design of a Nonimaging Fresnel Lens for Solar Concentrators,” Solar Energy , vol. 65, pp. 379-387, 1999.
【15】 R. Leutz, A. Suzuki, A. Akisawa, T. Kashiwagi, “Shaped Nonimaging Fresnel Lenses,” Journal of Optics A : Pure and Applied Optics, vol. 2, pp. 112-116, 2000.
【16】 E.Hecht, “Optics,” 4th Ed, Addison Wesley, ISBN:0-321-18878-0, 2002.
【17】 H.Arashi , and H.Natio , “Highly Concentrated Solar Energy Transmission through an Optical Fiber Coupled with CPC,” Energy ConversionEngineering Conference, vol. 3, pp. 1871-1876, 1997.
【18】 D. Liang, L. F. Monteiro, M. R. Teixeira, M. L. F. Monteiro, and M. Collares-Pereira, “Fiber-optic solar energy transmission and concentration,” Solar Energy Materials and Solar Cells, vol. 54, no. 1-4, pp. 323-331, 1998.
【19】 M. Srinivasan, L. V. Kulkarni, C. S. Pasupathy, “A Simple Technique of Fabrication of Paraboloidal Concentrators,” Soalr Energy, 22(5):463-465, 1979.
【20】 J.A. Manrique, “A Compound Parabolic Concentrator,” Int. Comm. Heat Mass Transfer, Vol. 11, pp. 267-273, 1984.
【21】 H. Kaiyan, Z. Hongfei, L. Yixin and C. Ziqian, “An imaging compounding parabolic concentrator,” In Proceedings of ISES Solar World Congress, vol. II, pp. 589-592, 2007.
【22】 H. Kaiyan, Z. Hongfei, L. Zhengliang, Taotao, and D. Jing, “Design and investigation of a novel concentrator used in solar fiber lamp,” Solar Energy 83, 2086-2091, 2009.
【23】 W.P. Mulligan, A.Terao, S.G. Daroczi, O. C. Pujol, M.J. Cudzinovic, “A Flat-Plate Concentrator : Micro-Concentrator Design Overview,” Photovoltaic Specialists Conference, pp. 1495-1497, 2000.
【24】 A. Terao, S.G. Daroczi, S.J. Coughlin, W.P. Mulligan, R.M. Swanson, M. Hernandez, P. Benitez, J.C. Minano, “New Developments on the Flat-plate Micro-Concentrator Module,” 3rd World Conference on Photovoltaic Energy Conversion, pp. 861-864, 2003.
【25】 C. Ciamberlini, F. Francini, G. Longobardi, M. Piattelli and P. Sansoni, “Solar system for exploitation of the whole collected energy,” Optics and Lasers in Engineering 39, 233-246, 2003.
【26】 P. Sansoni, D. Fontani, F. Francini, L. Mercatelli, D. Jafrancesco, E. Sani and D. Ferruzzi, “Internal Lighting by Solar Collectors and Optical Fibres,” Solar Collectors and Panels, Theory and Applications, Reccab Manyala (Ed.), ISBN: 978-953-307-142-8, InTech, 2010.
【27】 M. F. Piszczor and R. P. Macosko, “A High-Efficiency Refractive Secondary Solar Concentrator for High Temperature Solar Thermal Applications,” NASA/TM-2000-208401, 2000.
【28】 D. J. Carter, “Tubular guidance systems for daylight: UK case studies,” Building Research & Information, 36(5): 520-535, 2008.
【29】 G. Courret, L. Scartezzini, D. Francioli,J. Meyer, “Design & assessment of an anidolic light duct,” Energy and Buildings 28: 79-99, 1998.
【30】 R. P. Leslie and JA. Brons, “An integrated skylight luminaire: combining daylight and lectric luminaires for energy efficiency,” Proceeding of Right Light 5. Nice, France, 2002.
【31】 A. Galasiu,G. Newsham, C. Suvagau, D. Sander, “Energy saving lighting control systems for open-plan offices: A field study,” Leukos 4(1): 7-29, 2007.
【32】 J. B. Aizenberg, “Principal new hollow light guide system 'heliobus' for daylighting and artificial lighting of central zones of multi-story buildings,” proceedings of Right Light 4. Copenhagen, Denmark, 1997.
【33】 A. Mingozzi and S. Bottiglioni, “An innovative system for daylight collecting and transport for long distances and mixing with artificial light coming from hollow light guides,” Proceeding of the 9th Lux Europa. Reykjavik, Iceland, 2001.
【34】 G.O. Schlegel, F.W. Burkholder, S.A. Klein, W.A. Beckman, B.D. Wood and J.D. Muhs, “Analysis of a full spectrum hybrid lighting system,” Solar Energy 76, 359-368, 2004.
【35】 M. S. Mayhoub and D. J. Carter, “Towards hybrid lighting systems: A review,” Lighting Research and Technology. 42: 51-71, 2010.
【36】 L. Whitehead, A. Upward, P. Friedel, A. Rosemann and M. Mossman, “A Cost-effectiveapproach to core daylighting,” Proceeding of2nd Canadian Solar Buildings Conference.Calgary, Canada, 2007.
【37】 葉俊毅,“非成像均光型TIR-R聚光鏡組於III-V族太陽能電池之應用”,國立成功大學系統及船舶機電工程學系,碩士論文,2009。
【38】 蔡一聰,“以逆向方式設計非球面鏡與其應用模組開發”,國立中正大學機械工程研究所,碩士論文,2005。
【39】 葉玉堂、饒建珍,肖峻審查,“幾何光學”,五南出版,ISBN:9789571154046,2008。
【40】 簡瑋廷,“高功率發光二極體應用於導光元件之研究”,國立中央大學光電科學研究所,碩士論文,2006。
【41】 P.A. Davies, “Edge-ray principle of nonimaging optics,” Journal of the Optical Society of America A, Vol. 11, No.4, April, 1994.
【42】 I. Moreno and C.C. Sun, “LED array: where does far-field begin?,” 8th International Conference on Solid State Lighting, Proceedings of SPIE Vol. 7058, 2008.
【43】 K.Wang, S Liu, F Chen, Z Qin, Z. Liu and X. Luo, “Freeform LED lens for rectangularly prescribed illumination,” Journal of Optics A: Pure Applied Optics 11, 105501 (10pp), 2009.
校內:2022-12-31公開