| 研究生: |
陳建和 Chen, Chien-Ho |
|---|---|
| 論文名稱: |
TF-BGA錫球接點熱應力和損壞機制之研究 A Study of Thermal Stress and Failure Mechanism of Solder Joints for Thin and Fine-pitch Ball Grid Array Package |
| 指導教授: |
潘文峰
Pan, Wen-Fung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系碩士在職專班 Department of Engineering Science (on the job class) |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 70 |
| 中文關鍵詞: | 熱應力 、塑膠封裝錫球陣列元件 |
| 外文關鍵詞: | PBGA, TF-BGA, thermal stress |
| 相關次數: | 點閱:146 下載:11 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在電子元件高功率及及輕、薄、短、小化的要求下,熱一直是造成電子元件失效的原因之一,BGA封裝的主要失效原因是作為接點的錫鉛共熔合金(63Sn-37Pb;或稱錫球)的疲勞破裂,這是導因於封裝體不同材料間熱膨脹係數的差異所造成的熱應變。因此本研究著重於溫度及熱應力對BGA封裝錫球接點損壞的影響。文中主要是利用ANSYS軟體分析,經由-55℃至125℃每小時2個循環的溫度負載下,探討銲錫材料的機械塑性行為,並代入Coffin-Manson的經驗公式內求出疲勞的半生期。
分析結果發現錫球的最大應力值皆發生於構裝體最外角落的錫球,而外凸形錫球接點的塑性應變範圍較內凹形大。錫球間距(pitch,指錫球中心點距離)愈小,銲墊面積愈大,錫球的應力較小。
在封裝體中,錫球的幾何形狀,或是其材料性質,多少會對錫球接點的應力結果有所影響;故本文也參考國內外的BGA構裝相關文獻,並取用文獻中對應力、應變量與疲勞壽命較具影響力的參數加以整合分析,藉以預防構裝過程中因為加熱所產生的諸多問題,提高產品的可靠度。
The major reliability issue of Ball Grid Array package is solder joint crack due to thermal expansion mismatch between joined materials.In this study, a nonlinear finite element mode was used to analyze solder joints under the thermally induced stress and failure mechanism during thermal cycling between -55℃ and 125℃. The Ansys software was performed to compute the thermal stress and plastic strain. The Coffin-Manson formula was used to predict the fatigue life.It is found that the maximum von Mises stress occurs at the outest corner solder joint . The plastic strain range of solder joints in hourglass shape is less than the ones in barrel shape. The smaller pitch and the joints with larger solder pad area result in less stress. The reliability of BGA package is dramatically improved by decreasing the peak thermal stress. These empirical correlations would be very useful to design engineers in selecting the electronic packaging materials and their properties to reduce the peak stress on the critical electronic devices.
[1] Qiang Yu and Shiratori, M., “Fatigue-strength Prediction of Microelectronics Solder Joints under Thermal Cyclic Loading,” Components, Packaging, and Manufacturing Technology, Part A, IEEE Transactions on [see also Components, Hybrids, and Manufacturing Technology, IEEE Transactions on] Volume: 203 , Sept. 1997 , pp. 266 –273.
[2] W. T.Chen and C. W.Nelson,”Thermal Stress in Bonded Joints,IBM J.Res.Develop,Vol.23,No.2,pp.178~188,1979.
[3] J. H. Chen, ”A Note on the Calculation of Thermal Stress in Electronic Packaging,Vol. 111,pp.313-320,1989.
[4] T. R. Hsu,“On Nonlinear Thermomechanical Analysis of IC Packages”, Advances in Electronic Packaging ASME 1992.
[5] John H. Lau,”Ball grid Array Technology”,McGraw-Hill,New York,1995.
[6] Taichi Miyazaki and Kazuhiko Terashima,”The Improvement of Solder Ball Strength Under high Temperature Storage”,IEEE/CPMT Int’l Electronics Manufacturing Technology Symposium,pp.333~341,1994.
[7] J.H. Lau and Yi-Hsin Pao,“Solder Joint Reliability of BGA, CSP, Flip Chip, and Fine Pitch SMT Assemblies”, McGraw-Hill Companies,Inc. New York, 1997.
[8] Ho,T.H.,Lee,J.Y.,Lee,R.S.and Lin,A.W.,”Linear Finite Element Stress Simullation of Solder Joints on 225 I/O Plastic BGA Packaging Under Thermal Cycling,”Electronic
Components and Technology Conference, 1995, Proceedings.,45th,pp.930-936.
[9] Bongtae Han and Yifan GUO,”Thermal Deformation Analysis of Various Electronic Packaging Products by Moiré and Microscopic Moiré interferometrv”.ASME Journal of Electronic Packaging,Vol.117,pp.185-191,Sep.1995.
[10]Qiag Yu and Shiratori,M.,”Fatigue-strength Prediction of Microelectronics Solder Joints under Thermal Cylic Loading,”Components,Packaging,and Manufacturing Technology,Part A,IEEE Transactions on[see also Components,Hybrids,and Manufacturing Technology,IEEE Transactions on] Volume:203,Sept.1997,PP.266-273.
[11] 陳正宗,林信立,邱垂鈺,全湘偉,黃志勇,韓文仁,秦無忝,1996, 有 限元素分析與工程實例-MSC/NASTRAN軟體應用,北門出版社。
[12] 賴育良,林啟豪,謝忠祐,1998,ANSYS電腦輔助工程分析,儒林出版社。
[13] ANSYS Menu,“Newton-Raphson Procedure”, ANSYS Theory
Reference, Reversion 5.5, pp.15-28-40, 1998.
[14] L.E. Malvern, J Appl. Mech., Vol. 18, pp. 261-281, 1951.
[15] Norman E. Dowling,“Mechanical Behavior of Materials:
engineering method for deformation, fracture and
fatigue”, Prentice Hall, Inc. Englewood Cliffs,N.J.,1993.
[16] ANSYS Menu,“Rate-Independent Plasticity”, ANSYS Theory Reference, Reversion 5.5, pp.4-4-24, 1998.
[17] Pecht, M., “Intergrated Circuit, Hybrid and Mulichio
Module Package Design and Guidelines:A Focus on
Reliability,” John Wiley&Sons, New York,1994.
[18] Solomon, H. D.,“Fatigue of 60/40 Solder”, IEEE Transactions on Components, Hybrids, and Man8facturing Technology, Vol. Chmt-9, No. 4, Dec. 1986, pp.423-431.
[19] J. H. Lau and S.-W.R.Lee,”Reliability of wafer lever chip scale package(WLCSP)with 96.5Sn3.5Ag lead-free solder joints on build-up microvia printed circuit board”, IEEE Transactions on Electronics Packaging Manufacturing,Vol.23,No.1,January 2000,pp.19-27
[20] 馮克林,”淺談銲錫可靠度”,工業材料,124期,pp.93-99, 86年4月.
[21] 陳永樹,”電子構裝之力學特性分析”,電子月刊,第37期,pp.79-88, 87年8月.
[22] 葉律廷,“溫度及應變速率在錫鉛合金材料壓縮變形行為上之效應分析”,國立成功大學機械工程科系碩士論文, 2000.
[23] Pecht, Michael.” Electronic packaging materials and their properties”, CRC Press, Boca Raton ,1999.
[24] 王柏村,2001,電腦輔助工程分析之實務與應用,全華科技圖書公司。
[25] John H.Lau,C.P.Wong,John L.Prince and Wataru Nakayama,” Electronic packaging :design, materials, process, and reliability”, McGraw-Hill, New York ,1998.
[26] Derman, Glenda,”Area-array Package Delivers IC Benefits”,Electronic Engineering Times,pp103-107,1999.
[27] S.O.Kasap,”Principles of Electronical Engineering Materials and Devices”, McGraw-Hill, New York ,2000.
[28] J. H. Lau and S.-W.R.Lee,”Reliability of wafer lever chip scale package(WLCSP)with 96.5Sn3.5Ag lead-free solder joints on build-up microvia printed circuit board”, IEEE Transactions on Electronics Packaging Manufacturing,Vol.23,No.1,January 2000,pp.55-63