| 研究生: |
郭政男 Guo, Zheng-Nan |
|---|---|
| 論文名稱: |
以水熱法合成(Ba1-xCax)(Ti1-yZry)O3奈米粉末之研究 Hydrothermal Synthesis of BCTZ (Ba1-xCaxTi1-yZryO3 ) Nanopowders |
| 指導教授: |
向性一
Hsiang, Hsing-I 宋志剛 Soong, Jakob |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 90 |
| 中文關鍵詞: | 水熱法 、鈦酸鋇 |
| 外文關鍵詞: | BaTiO3, Hydrothermal Method |
| 相關次數: | 點閱:60 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以BaCl2、CaCl2、TiCl4、ZrOCl2為前導物,利用水熱法合成(Ba1-xCax)(Ti1-yZry)O3,BCTZ粉末。探討水熱參數(A/B 比[(Ba2++Ca2+)/(Ti4++Zr4+) 比]、Ti起始濃度、NaOH過量濃度、反應溫度、持溫時間)的不同對粉體性質的影響。合成的粉體將以X光繞射分析儀(XRD)鑑定其結晶相、Scherrer equation計算XRD粒徑和利用X光繞射之內標準定量法算其相變定量分析,並利用Hall關係式計算內應變以比較不同水熱參數對均勻度之影響;以場發射掃瞄式電子顯微鏡(SEM)和穿透式電子顯微鏡(TEM)觀察粉體之粒徑、形態和其分散之情形;再以表面積分析(BET)計算比表面積換算BET粒徑並計算其凝聚指數;以傅利葉轉換紅外線光譜分析儀(FT-IR)量測粉體中OH基和碳酸根之變化。接著以感應耦合電漿質譜儀(ICP-Mass)量測不同水熱參數對Ca、Zr取代量之影響。
實驗結果顯示,當提高A/B 比、增加四氯化鈦之起始濃度、氫氧化鈉過量濃度時,可得到較小之鈣鈦礦粉體。增加反應溫度和反應時間可得較大之粉體,但會有些許的凝聚現象發生。當四氯化鈦之起始濃度為0.4 M、氫氧化鈉過量濃度2.0 M、水熱反應溫度200 ℃、水熱反應時間2小時、A/B比=2時可合成出均勻度佳、分散良好、粒徑大小為40-60 nm之鈣鈦礦粉體,且其產率約為85%。水熱法合成BCTZ粉末中殘留之BaCO3雜相可經酸洗而去除,且不會影響顆粒之外型。經由XRD及ICP-Mass鑑定,得知鈣鋯離子確實進入鈦酸鋇結構中,而形成BCTZ固溶體粉末。以顯微結構及XRD粒徑分析其生成機制,在反應前期,生成機制為原位生成,而在後期為溶解析出和原位生成機制並行。
In this study, (Ba1-xCax)(Ti1-yZry)O3 powders were synthesized using the hydrothermal method from BaCl2, CaCl2, TiCl4 and ZrOCl2. The influence of the experimental of parameters such as A/B ratio[(Ba2++Ca2+)/(Ti4++Zr4+) ratio], Ti4+ initial concentration,NaOH excess concentration, reaction temperature and reaction time on the properties of the obtained powders were investigated. The crystal structure, particle size and morphology of the obtained BCTZ powders were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), BET, FT-IR, ICP-Mass and Hall equation were used to determine the productivity and compositional homogeneity.
The result indicated that the particle sizes decreased with the increase of the A/B ratio, Ti4+ initial concentration and NaOH excess concentration. Particle size was increased with the increase in the reaction temperature and reaction time. When A/B ratio was 2.0, Ti4+ initial concentration was 0.4M, NaOH excess was 2M and reaction temperature was 200℃ for 2h, the particle sizes of the BCTZ powder was about 40-60 nm. The ICP-Mass and XRD results showed that the Ca2+ and Zr4+ were dissoluted into the BaTiO3 to form the BCTZ solid solution. According to the XRD and SEM results, the formation mechanism for BCTZ powders was dominated by the in-situ mechanism in the early stage, and both in-situ route and dissolution-precipitation route were involved in the later stage.
1. G. Shirane, F. Jona, and R. Pepinsky, “Some Aspects of Ferroelectricity,” Proc. IRE, 43, (1995) 1738-1793.
2. B. Jaffe, W, R. Cook, Jr., and H. Jaffe, Piezoelectric Ceramics, Academic Press New York, (1971) 53-114.
3. G. Arlt, D. Hennings, and G. D. With, “Dielectric Properties of Fined-Grained Barium Titanate,” J. Appl. Phys., 58, (1985) 1619-1625.
4. R. P. S. M. Lobo, N. D. S. Mohallem, and R. L. Moreira, “Grain Size Effects on Diffuse Phase Transition of Sol-Gel Prepared Barium Titanate Ceramics,” J. Am. Ceram. Soc., 78, (1995) 1343-1346.
5. D. F. K. Hennings and H. Schreinemacher, “Ca-Acceptors in Dielectric Ceramics
Sintered in Reducive Atmospheres,” J. Europ. Ceram. Soc., 15, (1995) 795-800.
6. T. F. Lin, J. L. Lin, C. T. Hu, and I. Ni. Lin, “The Microstructure Developments and Electrical Properties of Calcium-Modified Barium Titanate Ceramics,” J. Mater. Sci., 26, (1991) 491-496.
7. D. Voltzke and H. P. Abich, “Investigations Related to the Inorporation of Ca2+ Ions into the BaTiO3 Lattice,” J. Mater. Sci., 30, (1995) 4896-4900.
8. T. F. Lin, J. L Lin, C. T. Hu, and I. N. Lin, “Influence of CaO Addition on the Electrical Properties of BaTiO3 Ceramics,” J. Appl. Phys., 67, (1990) 1042-1047.
9. M. Ceh and D. Kolar, “Solubility of Calcium Oxide in Barium Titanate,” Mater. Res. Bull., 29, (1994) 269-275.
10. S. M. Neirman, “The Curie Point Temperature of Ba(Ti1-xZrx)O3 Solid Solution,” J. Mater. Sci., 23, (1988) 3973-3980.
11. T. R. Armstrong, L. E. Morgens, A. K. Maurice, and R. C. Buchanan, “Effects of Zirconia on Microstructure and Dielectric Properties of Barium Titanate Ceramics,” J. Am. Ceram. Soc., 67, (1989) 605-611.
12. R. Vivekanandan, S. Philip, and T. R. N. Kutty, “Hydrothermal Preparation of Ba(Ti,Zr)O3 Fine Powders,” Mater. Res. Bull., 22, (1986) 99-108.
13. K. Kms, “Low Temperature Evolution of Crystalline BaTiO3 from Alkali-
Metal Free Precursor Using Sol-Gel Process,” Mater. Res. Innov., 2 (1999)
256-262.
14. M. Veith, S. Mathur, N. Lecerf, V. Huch, T. Decker, H. Beck, W. Eiser, and
R. Haberkorn, “Sol-Gel Synthesis of Nano-Scaled BaTiO3, BaZrO3 and BaTi0.5Zr0.5O3 Oxides via Single-Source Alkoxide Precursors and Semi-
Alkoxide Routes,” J. Sol-Gel. Sci. Tech., 17, (2000) 145-158.
15. P. Vitanov, A. Harizanova, T. Ivanova, D. Velkov, and Z. Raytcheva, “Structure Evolution and Dielectric Properties of BaTiO3 and BaxSr1-xTiO3 Thin Films Prepared by the Sol-Gel Method,” Vacuum, 69, (2002) 371-377.
16. Z. Shen, J. Chen, and J Yun, “Preparation and Characterizations of Uniform Nanosized BaTiO3 Crystallites by the High-Hravity Reactive Precipitation Method,” J. Cryst. Growth, 267, (2004) 325-335.
17. S. Van, M. Emond, A. Winnubst, and H. Verweij, “Preparation of BaTiO3 by Homogeneous Precipitation,” J. Europ. Ceram. Soc., 19 , (1999) 1683-1690.
18. A. J. Moulson and J. M. Herbert, Electroceramics Mateials Properties Applications, Chapman & Hall, (1990) New York.
19. D. Hennings and A. Schnell, “Diffuse Ferroelectric Phase Transitions in Ba(Ti1-yZry)O3 Ceramics,” J. Am. Ceram. Soc., 65, (1982) 539-544.
20. T. Sugimoto, “Preparation of Monodispersed Colloidal Particles,” Advances in Colloid and Interface Science, 28, (1987) 65-108.
21. J. O. Eckert, C. C. H. Houston, B. L. Gersten, M. M. Lencka, and R. E. Riman, “Kinetics and Mechanisms of Hydrothermal Synthesis of Barium Titanate,” J.
Am. Ceram. Soc., 79, (1996) 2329-2939.
22. W. J. Dawson, “Hydrothermal Synthesis of Advanced Ceramic Powders,” Ceram. Bull., 67, (1988) 1673-1678.
23. E.W. Shi, C.T. Xia, W.Z. Zhong, B.G. Wang, and C. D. Feng, “Cryatallographic Properties of Hydrothernal Barium Titanate Crystallites,” J. Am. Ceram. Soc., 80, (1997) 1567-1572.
24. F. K. Detlev, Hennings, C. Metzmacher, and B. S. Schreinemacher, “Defect Chemistry and Microstructure of Hydrothermal Barium Titanate,” J. Am. Ceram. Soc., 84, (2001) 179-182.
25. S. W. Lu, B. I. Lee, Z. L. Wang, and W. D. Samuels, “Hydrothermal Synthesis and Structural Characterization of BaTiO3 Nanocrystals,” J. Cryst. Growth, 219, (2000) 269-276.
26. J. Y. Choi, H. K. Chong, and D. K. Kim, “Hydrothermal Synthesis of Spherical Perovskite Oxide Powders Using Spherical Gel Powders,” J. Am. Ceram. Soc.,81, (1998) 1353-1356.
27. H. Xu, L. Gao, and J. Guo, “Preparation and Characterization of Tetragonal Barium Titanate Powders by Hydrothermal Method,” J. Europ. Ceram. Soc., 22, (2002) 1113-1170.
28. R. I. Walton, “Subcritical Solvothermal Synthesis of Condensed Inorganic Materials,” Chem. Soc. Rev., 31, (2002) 230-238.
29. T. Chang, E. W. Shi, W. Z. Zhong, and J. K. Guo, “Hydrothermal Synthesis of BaTiO3 Nano/Microcrystals,” J. Cryst. Growth, 166, (1996) 961-966.
30. G. K. Williamson, and W. H. Hall, “X-Ray Line Broadening from Filed Aluminum and Wolfram,” Acta Metall., 1, (1953) 22.
31. V. S. Tiwari, D. Pandey, and P. Groves, “The Influence of a Powder Processing Technique on Chemical Homogeneity and the Diffuse Phase Transition Behavior of Ba0.9Ca0.1TiO3 Ceramics,” J. Phys. D: Appl. Phys., 22, (1989) 837-843.
32. W. Hertl, “Kinetics of Barium Titamate Synthesis,” J. Am. Ceram. Soc., 71, (1988) 879-883.
33. A. T. Chien, L.S. Speck, F. F. Lange, A. C. Daykin, and C. G. Levi, “Low Temperature /Low Pressure Hydrothermal Systhesis of Barium Titanate:Powder and Heteroepitaxial Thin Films,” J. Mater. Res., 10, (1995) 1784-1789.
34. J. Eckert, C. C. H. Houston, B. L. Gersten, M. M. Lericka, and R. E. Riman,
“Kinetics and Mechanisms of Hydrothermal Synethesis of Barium Titanate,” J. Am. Ceram. Soc., 79, (1996) 2929-2939.
35. M. Viviani, M. T. Buscaglia, A. Testino, V. Buscaglia, and P. Bowen, and P. Nanni,“The Influence of Concentration on the Formation of BaTiO3 by Direct Reaction of TiCl4 with Ba(OH)2 in Aqueous Solution,” J. Europ. Ceram. Soc., 23, (2003) 1383-1390.
36. J. H. Lee, C. W. Won, and T. S. Kim, “Characteristics of BaTiO3 Powders Synthesized by Hydrothermal Process,” J. Mater. Sci., 35, (2000) 4271-4274.
37. M. I. D. Guemes, T. G. Carreno, and C. J. Serna, “Mechanism of Formation of MTiO3 (M=Sr or Ba) by the Gel Method,” J. Mater. Sci., 24, (1989) 1011-1018.
38. I. J. Clark, T. Takeuchi, N. Ohtori, D. C. Sinclair, “Hydrothermal Synthesis
and Characterization of BaTiO3 Fine Powder Precursors, Polymorphism and Properties,” J. Mater. Chem., 9, (1999) 83-91.
39. 陳惠姿,水熱法合成細顆粒鈦酸鋇,國立中央大學/化學工程研究所碩士論文(2000)。
40. E. Ciftci, M. N. Ranaman, and M. Shumsky, “Hydrothermal Precipitation and Characterization of Nanocrystalline BaTiO3 Particles,” J. Mater. Sci., 36, (2001)4875-4882.
41. I. MacLaren, and C. B. Ponton, “A TEM and HREM Study of Particle Formation during Barium Titanate Synthesis in Aqueous Solution,” J. Europ. Ceram. Soc., 20, (2000) 1267-1275.
42. J. Moon, E. Suvaci, A. Morrone, S. Costantino, and J. H. Adair, “Formation
Mechanisms and Morphological Changes during the Hydrothermal Synthesis of BaTiO3 Particles from a Chemically Modified Amorphous Titanium (Hydrous) Oxide Precursor,” J. Europ. Ceram. Soc., 23, (2003) 2153-2161.
43. A. Outzourhit, M. A. E. I. Rahhni, M. L. Hafid, F. Bensamka, and A. Outzourhit, “Characterization of Hydrothermally Prepared BaTi1-xZrxO3,” J. Alloy Comp., 340, (2002) 214-219.
44.李耀榮,以化學共沉膠合成PLZT粉末之研究, 國立成功大學資源工程研究所博士論文 (1997)。
45. D. Pandey, V. S. Tiwari, and A. K. Singh, “A Semi-Wet Route to the Synthesis of YBa2Cu3O7-y,” J. Phys. D: Appl., 22, (1989) 182-186.