| 研究生: |
詹復宇 Zhan, Fu-Yu |
|---|---|
| 論文名稱: |
前胸腺素在妊娠期糖尿病的病態生理學所扮演的角色 The role of prothymosin alpha in the pathophysiology of gestational diabetes mellitus |
| 指導教授: |
蕭璦莉
Shiau, Ai-Li |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 微生物及免疫學研究所 Department of Microbiology & Immunology |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 53 |
| 中文關鍵詞: | 妊娠期糖尿病 、前胸腺素 、結締組織 、第一型膠原蛋白 、胎盤 |
| 外文關鍵詞: | GDM, ProT, Connective tissue, Collagen type I, Placenta |
| 相關次數: | 點閱:118 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
妊娠期糖尿病(gestational diabetes mellitus, GDM)是在懷孕期間被診斷出糖尿病會造成死胎、先天性畸形、巨嬰症、胎盤發炎與早產。前胸腺素(prothymosin α, ProT)是一種高度酸性核蛋白參與在多種細胞功能中,例如:細胞週期、細胞增生還有免疫調節的作用。我們實驗室先前的研究顯示ProT會透過抑制胰島素訊息路徑導致胰島素抗性的發展。在本研究中,我們想探討ProT在妊娠期糖尿病中扮演的角色。我們先收取人類胎盤與血漿利用反轉錄酶聚合連鎖反應與西方墨點法分析。發現ProT mRNA和蛋白質在妊娠期糖尿病患者表現量高於一般健康孕婦。利用第一型膠原蛋白(collagen type I, Col I)來檢測結締組織的表現量,妊娠期糖尿病患者胎盤Col I表現量高於一般懷孕婦女。接下來在細胞實驗,我們過量與剔除ProT在3ASubE人類滋養層細胞中,發現ProT可以調控Col I。我們在在用葡萄糖和甲基乙二醛(methylglyoxal)處理的人類滋養層細胞發現可以增強ProT表現量。在用葡萄糖和甲基乙二醛處理的滋養細胞中Col I和ProT表達有升高,但是我們使用ROS抑制劑(N-acetyl-L-cysteine)發現Col I表達會降低。在動物實驗中,我們收集C57BL/6小鼠不同天數的胎盤。我們結果知道ProT會在懷孕週期第13與15天高表現。我們利用鏈脲佐菌素(streptozocin)建立了妊娠期糖尿病小鼠模式。發現妊娠期小鼠ProT、血糖、Col I與胎盤重量都高於一般野生型懷孕小鼠。而血漿中胰島素低於一般野生型小鼠。我們也過量表現ProT在人類滋養層細胞中發現會增強NFB活化與使用NFB抑制劑處理後會降低Col I表現量。我們也發現過量表現ProT會增強凋亡作用(apoptosis)caspase-3的表現。總結我們的結果,顯示ProT可以增加胎盤結締組織進而幫助妊娠期糖尿病胎盤結締組織的病態發展。ProT可能可以當作標靶治療妊娠期糖尿病的一種方向。
Gestational diabetes mellitus (GDM) is a diabetes diagnosed during pregnancy that causes stillborn, congenital malformations, giant baby syndrome, placenta inflammation, and premature birth. Prothymosin α (ProT) is a highly acidic protein with a wide distribution. ProT is involved in diverse intracellular and extracellular functions, such as cell proliferation, apoptosis, oxidative stress, and immunomodulation. We have shown that ProT contributes to the pathogenesis of insulin resistance through inhibiting insulin signaling. In this study, we investigated the potential role of ProT in GDM. We collected human placenta tissue and plasma for quantitative real-time reverse transcriptase-polymerase chain reaction (RT-PCR) analysis and western blotting. The expressions of ProT mRNA and protein were higher in GDM patients than in healthy pregnant women. Connective tissue of the placenta examined by type I collagen (collagen I) expression was more serious in GDM patients compared with their normal pregnant women. Next, we overexpressed and knocked down ProT expression in the 3AsubE trophoblast cell line and found that ProT could enhance collagen I expression. Treatment with glucose and methylglyoxal enhanced ProT and collagen I expression in trophoblasts, which could be abrogated by addition of the ROS inhibitor N-acetyl-L-cysteine (NAC). In animal models, we collected the placenta tissue of C57BL/6 mice at different phases of pregnancy. Our results revealed that ProT was overexpressed at 13 and 15 days of the pregnancy cycle. We used streptozotocin (STZ) to induce diabetes in mice as the GDM animal model. The GDM mice had higher levels of ProT, fasting bloodglucose, collagen I, and placenta weight than the normal mice. Furthermore, levels of plasma insulin were lower in the GDM mice than normal mice. Overexpression of ProT in 3ASubE placenta trophoblast cells enhanced NFB activation. Moreover, treatment with an NFkB inhibitor downregulated collagen I expression. We also observed that overexpression of ProT enhanced the expression of the apoptosis marker caspase-3. Taken together, our results demonstrate that ProT can increase the placenta connective tissue and thereby contribute to the pathogenesis of placenta connective tissue in GDM. Our data also suggest that ProT may be a therapeutic target for GDM.
Metzger BE, Coustan DR. Summary and recommendations of the Fourth International Workshop-Conference on Gestational Diabetes Mellitus. The Organizing Committee. Diabetes Care. 1998;21:161-7.
Deierlein AL, Siega-Riz AM, Chantala K, Herring AH. The association between maternal glucose concentration and child BMI at age 3 years. Diabetes Care. 2011;34:480-4.
West NA, Crume TL, Maligie MA, Dabelea D. Cardiovascular risk factors in children exposed to maternal diabetes in utero. Diabetologia. 2011;54:504-7.
Jauniaux E, Burton GJ. Villous histomorphometry and placental bed biopsy investigation in Type I diabetic pregnancies. Placenta. 2006;27:468-74.
Mayhew TM. Enhanced fetoplacental angiogenesis in pre-gestational diabetes mellitus: the extra growth is exclusively longitudinal and not accompanied by microvascular remodelling. Diabetologia. 2002;45:1434-9.
Nelson SM, Coan PM, Burton GJ, Lindsay RS. Placental structure in type 1 diabetes: relation to fetal insulin, leptin, and IGF-I. Diabetes. 2009;58:2634-41.
Mayhew TM, Sorensen FB, Klebe JG, Jackson MR. Growth and maturation of villi in placentae from well-controlled diabetic women. Placenta. 1994;15:57-65.
Haritos AA, Goodall GJ, Horecker BL. Prothymosin alpha: isolation andproperties of the major immunoreactive form of thymosin alpha 1 in rat thymus. Proc Natl Acad Sci U S A. 1984;81:1008-11.
Eschenfeldt WH, Berger SL. The human prothymosin alpha gene is polymorphic and induced upon growth stimulation: evidence using a cloned cDNA. Proc Natl Acad Sci U S A. 1986;83:9403-7.
Gómez-Márquez J, Segade F, Dosil M, Pichel JG, Bustelo XR, Freire M. The expression of prothymosin alpha gene in T lymphocytes and leukemic lymphoid cells is tied to lymphocyte proliferation. J Biol Chem. 1989;264:8451-4.
Evstafieva AG, Belov GA, Rubtsov YP, Kalkum M, Joseph B, Chichkova NV, Sukhacheva EA, Bogdanov AA, Pettersson RF, Agol VI, Vartapetian AB. Apoptosis-related fragmentation, translocation, and properties of human prothymosin alpha. Exp Cell Res. 2003;284:211-23.
Wu CL, Shiau AL, Lin CS. Prothymosin alpha promotes cell proliferation in NIH3T3 cells. Life Sci. 1997;61:2091-101.
Rodríguez P, Viñuela JE, Alvarez-Fernández L, Gómez-Márquez J. Prothymosin alpha antisense oligonucleotides induce apoptosis in HL-60 cells. Cell Death Differ. 1999;6:3-5.
Su YC, Ou HY, Wu HT, Wu P, Chen YC, Su BH, Shiau AL, Chang CJ, Wu CL. Prothymosin-α Overexpression Contributes to the Development of Insulin Resistance. J Clin Endocrinol Metab. 2015;100:4114-23.
Crestani B. The respiratory system in connective tissue disorders. Allergy. 2005;60:715-34.
Di Lullo GA, Sweeney SM, Korkko J, Ala-Kokko L, San Antonio JD. Mapping the ligand-binding sites and disease-associated mutations on the most abundant protein in the human, type I collagen. J Biol Chem. 2002;277:4223-31.
Szkudelski T. Streptozotocin-nicotinamide-induced diabetes in the rat. Characteristics of the experimental model. Exp Biol Med. 2012;237:481-90.
Su BH, Tseng YL, Shieh GS, Chen YC, Wu P, Shiau AL, Wu CL. Over-expression of prothymosin-α antagonizes TGFβ signalling to promote the development of emphysema. J Pathol. 2016;238:412-22.
Cvitic S, Desoye G, Hiden U. Glucose, insulin, and oxygen interplay inplacental hypervascularisation in diabetes mellitus. Biomed Res Int. 2014;2014:145846.
HAPO Study Cooperative Research Group, Metzger BE, Lowe LP, Dyer AR, Trimble ER, Chaovarindr U, Coustan DR, Hadden DR, McCance DR, Hod M, McIntyre HD, Oats JJ, Persson B, Rogers MS, Sacks DA. Hyperglycemia and adverse pregnancy outcomes. N Engl J Med. 2008;358:1991-2002.
Dabelea D, Hanson RL, Lindsay RS, Pettitt DJ, Imperatore G, Gabir MM, Roumain J, Bennett PH, Knowler WC. Intrauterine exposure to diabetes conveys risks for type 2 diabetes and obesity: a study of discordant sibships. Diabetes. 2000;49:2208-11.
Mayhew TM. Enhanced fetoplacental angiogenesis in pre-gestational diabetes mellitus: the extra growth is exclusively longitudinal and not accompanied by microvascular remodelling. Diabetologia. 2002;45:1434-9.
Presta M, Dell'Era P, Mitola S, Moroni E, Ronca R, Rusnati M. Fibroblastgrowth factor/fibroblast growth factor receptor system in angiogenesis. Cytokine Growth Factor Rev. 2005;16:159-78.
Thurston G. Role of Angiopoietins and Tie receptor tyrosine kinases inangiogenesis and lymphangiogenesis. Cell Tissue Res. 2003;314:61-8.
Brouillet S, Hoffmann P, Benharouga M, Salomon A, Schaal JP, Feige JJ, Alfaidy N. Molecular characterization of EG-VEGF-mediated angiogenesis: differential effects on microvascular and macrovascular endothelial cells. Mol Biol Cell. 2010;21:2832-43.
Lappas M, Hiden U, Desoye G, Froehlich J, Hauguel-de Mouzon S, Jawerbaum A. The role of oxidative stress in the pathophysiology of gestational diabetes mellitus. Antioxid Redox Signal. 2011;15:3061-100.
Radaelli T, Varastehpour A, Catalano P, Hauguel-de Mouzon S. Gestational diabetes induces placental genes for chronic stress and inflammatory pathways. Diabetes. 2003;52:2951-8.
Escobar J, Teramo K, Stefanovic V, Andersson S, Asensi MA, Arduini A, Cubells E, Sastre J, Vento M. Amniotic fluid oxidative and nitrosative stress biomarkers correlate with fetal chronic hypoxia in diabetic pregnancies. Neonatology. 2013;103:193-8.
Chang SC, Vivian Yang WC. Hyperglycemia induces altered expressions of angiogenesis associated molecules in the trophoblast. Evid Based Complement Alternat Med. 2013;2013:457971.
Kleiblova P, Dostalova I, Bartlova M, Lacinova Z, Ticha I, Krejci V, Springer D, Kleibl Z, Haluzik M. Expression of adipokines and estrogen receptors in adipose tissue and placenta of patients with gestational diabetes mellitus. Mol Cell Endocrinol. 2010;314:150-6.
Moreli JB, Morceli G, De Luca AK, Magalhães CG, Costa RA, Damasceno DC, Rudge MV, Calderon IM. Influence of maternal hyperglycemia on IL-10 and TNF-α production: the relationship with perinatal outcomes. J Clin Immunol. 2012;32:604-10.
Atègbo JM, Grissa O, Yessoufou A, Hichami A, Dramane KL, Moutairou K, Miled A, Grissa A, Jerbi M, Tabka Z, Khan NA. Modulation of adipokines and cytokines in gestational diabetes and macrosomia. J Clin Endocrinol Metab. 2006;91:4137-43.
Lapolla A, Dalfrà MG, Sanzari M, Fedele D, Betterle C, Masin M, Zanchetta R, Faggian D, Masotti M, Nucera V, Plebani M. Lymphocyte subsets and cytokines in women with gestational diabetes mellitus and their newborn. Cytokine. 2005;31:280-7.
Nelson SM, Coan PM, Burton GJ, Lindsay RS. Placental structure in type 1 diabetes: relation to fetal insulin, leptin, and IGF-I. Diabetes. 2009;58:2634-41.
Persson B, Westgren M, Celsi G, Nord E, Ortqvist E. Leptin concentrations in cord blood in normal newborn infants and offspring of diabetic mothers. Horm Metab Res. 1999;31:467-71.
Gauster M, Desoye G, Tötsch M, Hiden U. The placenta and gestational diabetes mellitus. Curr Diab Rep. 2012;12:16-23.
Shiwa M, Nishimura Y, Wakatabe R, Fukawa A, Arikuni H, Ota H, Kato Y, Yamori T. Rapid discovery and identification of a tissue-specific tumor biomarker from 39 human cancer cell lines using the SELDI ProteinChip platform. Biochem Biophys Res Commun. 2003;309:18-25.
Baxevanis CN, Frillingos S, Seferiadis K, Reclos GJ, Arsenis P, Katsiyiannis A, Anastasopoulos E, Tsolas O, Papamichail M. Enhancement of human T lymphocyte function by prothymosin alpha: increased production of interleukin-2 and expression of interleukin-2 receptors in normal human peripheral blood T lymphocytes. Immunopharmacol Immunotoxicol. 1990;12:595-617.
Ivkovic S, Yoon BS, Popoff SN, Safadi FF, Libuda DE, Stephenson RC, Daluiski A, Lyons KM. Connective tissue growth factor coordinates chondrogenesis and angiogenesis during skeletal development. Development. 2003;130:2779-91.
Brigstock DR, Steffen CL, Kim GY, Vegunta RK, Diehl JR, Harding PA. Purification and characterization of novel heparin-binding growth factors in uterine secretory fluids. Identification as heparin-regulated Mr 10,000 forms of connective tissue growth factor. J Biol Chem. 1997;272:20275-82.
Duncan MR, Frazier KS, Abramson S, Williams S, Klapper H, Huang X, Grotendorst GR. Connective tissue growth factor mediates transforming growth factor beta-induced collagen synthesis: down-regulation by cAMP. FASEB J. 1999;13:1774-86.
Hong KH, Yoo SA, Kang SS, Choi JJ, Kim WU, Cho CS. Hypoxia induces expression of connective tissue growth factor in scleroderma skin fibroblasts. Clin Exp Immunol. 2006;146:362-70.
Rimon E, Chen B, Shanks AL, Nelson DM, Sadovsky Y. Hypoxia in human trophoblasts stimulates the expression and secretion of connective tissue growth factor. Endocrinology. 2008;149:2952-8.
Clarson C, Tevaarwerk GJ, Harding PG, Chance GW, Haust MD. Placental weight in diabetic pregnancies. Placenta. 1989;10:275-81.
1: Teasdale F. Histomorphometry of the placenta of the diabetic women: class A diabetes mellitus. Placenta. 1981;2:241-51.
Watson AL, Skepper JN, Jauniaux E, Burton GJ. Susceptibility of humanplacental syncytiotrophoblastic mitochondria to oxygen-mediated damage in relation to gestational age. J Clin Endocrinol Metab. 1998;83:1697-705.
Burton GJ, Hempstock J, Jauniaux E. Oxygen, early embryonic metabolism and free radical-mediated embryopathies. Reprod Biomed Online. 2003;6:84-96.
Jawerbaum A, Gonzalez E. The role of alterations in arachidonic acidmetabolism and nitric oxide homeostasis in rat models of diabetes during early pregnancy. Curr Pharm Des. 2005;11:1327-42.
Redman CW, Sargent IL. Placental debris, oxidative stress and pre-eclampsia. Placenta. 2000;21:597-602.
校內:立即公開