| 研究生: |
陳捷昇 Chen, Chieh-Sheng |
|---|---|
| 論文名稱: |
三軸試驗下口罩加勁砂土力學行為之研究 Study on Mechanical Behavior of Face mask Reinforced Sands under Triaxial Compression Tests |
| 指導教授: |
洪瀞
Hung, Ching |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 97 |
| 中文關鍵詞: | 口罩 、土壤加勁 、三軸壓密不排水試驗 |
| 外文關鍵詞: | face mask, soil reinforcement, CU test |
| 相關次數: | 點閱:32 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在新冠病毒(COVID-19)大流行期間,許多國家強制要求人民在公共場合必須配戴口罩。使用口罩對於防堵疫情傳播確實具有很高的保護力,卻也帶來了嚴重的環境問題以及汙染。為了賦予疫情期間產生的大量廢棄口罩嶄新的工程利用價值,並且提供一種安全的再利用方式,本研究嘗試探討其使用於土壤加勁之可行性。
本研究採用實驗室級渥太華砂(OS)以及台南市安平地區海砂(SS)探討口罩碎片(FM)加勁之成效差異。通過裁切口罩收集碎片後,考慮不同長寬比和添加量與試驗砂土混和。使用靜三軸試驗儀器,通過壓密不排水(Consolidated Undrained Test)試驗施加三種不同有效壓密應力(p'"=100、200及300kPa")檢視加勁土壤之力學行為。
本研究結果顯示兩種基本試驗材料(OS及SS),不論是與長寬比2或4以及添加量0.3%或0.5%的FM混合後都能夠有效改善其力學行為。除了能夠有效提高兩種砂土的剪力強度外,FM還有助於試體在壓縮過程中增加其膨脹性。但是兩種試驗基本材料有著不同的最佳添加量,而影響兩者最佳添加量的因素可能為顆粒形狀以及中值粒徑。在試驗基本材料中加入FM能夠使其在受剪階段觸發其拉伸應力及有效提高砂土結構與FM之間的互鎖效應,導致加勁試體的剪力強度上升且應力-應變行為變得更具膨脹性。從超額孔隙水壓(Δu)與軸向應變之關係圖結果顯示,不管有效壓密應力為多少,使用長寬比較大的FM加勁試體有著更大的膨脹行為。此外,從超額孔隙水壓(Δu)的結果還可得知,FM加勁後的試體結構會變得更加緊密。最後,實驗結果表明,加勁成效隨著長寬比增加而上升,惟其可能存在極限值,需更多的實驗去驗證。
During the COVID-19 pandemic, many countries have made it mandatory to wear masks in public to prevent the epidemics. To create a new engineering value and provide a way to safely reuse the large number of face masks produced during the epidemic, this study investigated the potential use of masks for soil reinforcement.
To investigate the reinforcement effect between Ottawa sand (OS) and sea sand (SS) with shredded face mask (FM), a series of triaxial compression tests were conducted. FMs were mixed with sands by different aspect ratios and addition percentages. The influence of effective mean stress was examined in consolidated undrained test to investigate the mechanical behavior of soil reinforcement effects.
Stress paths and stress-strain behaviors indicated that the inclusion of FM improved the overall sand strength. Additionally, the inclusion of FM results in a change from brittle to ductile behavior. Notably, OS and SS had different optimal addition percentages, likely due to the different median grain sizes (D50) of the OS and SS. The excess pore water pressure and axial strain behavior showed that the Δu of all samples first increased to a peak value and then decreased rapidly. This reduction in Δu indicates that the samples tended to be ductile.
The experiment results demonstrate that the reinforcement effect increases with aspect ratio, but there may be limitation that may require further experiments for verification.
1. Ayyar, T. R., Krishnaswamy, N. R., & Viswanadham, B. V. S. (1989, November). Geosynthetics for foundations on a swelling clay. In Proceedings of International Workshop on Geotextiles (pp. 176-180).
2. Ang, E. C., & Loehr, J. E. (2003). Specimen size effects for fiber-reinforced silty clay in unconfined compression. Geotechnical Testing Journal, 26(2), 191-200.
3. Abtahi, M., Allaie, H., & Hejazi, M. (2009). An investigative study on chemical soil stabilization. 8th Int cong civ eng, Shiraz, Iran, (1.25), 1-75.
4. Ahmad, F., Bateni, F., & Azmi, M. (2010). Performance evaluation of silty sand reinforced with fibres. Geotextiles and geomembranes, 28(1), 93-99.
5. Attom, M. F., & Al-Tamimi, A. K. (2010). Effects of polypropylene fibers on the shear strength of sandy soil. International Journal of Geosciences, 1(01), 44.
6. Ardeshiri-Lajimi, S., Yazdani, M., & Assadi Langroudi, A. (2016). A Study on the liquefaction risk in seismic design of foundations. Geomechanics and Engineering, 11(6), 805-820.
7. Abbaspour, M., Aflaki, E., & Nejad, F. M. (2019). Reuse of waste tire textile fibers as soil reinforcement. Journal of cleaner production, 207, 1059-1071.
8. Bassett, R. H., & Last, N. C. (1978, April). Reinforcing earth below footings and embankments. In Symposium on Earth Reinforcement (pp. 202-231). ASCE.
9. Consoli, N. C., Montardo, J. P., Prietto, P. D. M., & Pasa, G. S. (2002). Engineering behavior of a sand reinforced with plastic waste. Journal of geotechnical and geoenvironmental engineering, 128(6), 462-472.
10. Chauhan, M. S., Mittal, S., & Mohanty, B. (2008). Performance evaluation of silty sand subgrade reinforced with fly ash and fibre. Geotextiles and geomembranes, 26(5), 429-435.
11. Choudhary, A. K., Jha, J. N., & Gill, K. S. (2010). A study on CBR behavior of waste plastic strip reinforced soil. Emirates journal for engineering research, 15(1), 51-57.
12. Chian, S. C., Tokimatsu, K., & Madabhushi, S. P. G. (2014). Soil liquefaction–induced uplift of underground structures: physical and numerical modeling. Journal of Geotechnical and Geoenvironmental Engineering, 140(10), 04014057.
13. Caggiano, A., Folino, P., Lima, C., Martinelli, E., & Pepe, M. (2017). On the mechanical response of hybrid fiber reinforced concrete with recycled and industrial steel fibers. Construction and Building Materials, 147, 286-295.
14. Correia NS, Rocha SA, Lodi PC, McCartney JS (2021) Shear strength behavior of clayey soil reinforced with polypropylene fibers under drained and undrained conditions. Geotext Geomembranes.
15. Dutta, R. K., & Sarda, V. K. (2007). CBR behaviour of waste plastic strip-reinforced stone dust/fly ash overlying saturated clay. Turkish Journal of Engineering and Environmental Sciences, 31(3), 171-182.
16. Diambra, A., Ibraim, E., Wood, D. M., & Russell, A. R. (2010). Fibre reinforced sands: experiments and modelling. Geotextiles and geomembranes, 28(3), 238-250.
17. Diambra, A., & Ibraim, E. (2015). Fibre-reinforced sand: interaction at the fibre and grain scale. Géotechnique, 65(4), 296-308.
18. Dafalias, Y. F. (2016). Must critical state theory be revisited to include fabric effects?. Acta Geotechnica, 11(3), 479-491.
19. Expert, C. E. S. (2008). Strength and ductility of randomly distributed palm fibers reinforced silty-sand soils. American Journal of Applied Sciences, 5(3), 209-220.
20. Fluet, J. E. (1988). Geosynthetics for soil improvement: a general report and keynote address. In Symposium on Geosynthetics for Soil Improvement at the ASCE ConventionAmerican Society of Civil Engineers (No. Geotechnical Special).
21. Falorca, I. M. C. F. G., & Pinto, M. I. M. (2011). Effect of short, randomly distributed polypropylene microfibres on shear strength behaviour of soils. Geosynthetics International, 18(1), 2-11.
22. Gray, D. H., & Al-Refeai, T. (1986). Behavior of fabric-versus fiber-reinforced sand. Journal of Geotechnical Engineering, 112(8), 804-820.
23. Ghavami, K., Toledo Filho, R. D., & Barbosa, N. P. (1999). Behaviour of composite soil reinforced with natural fibres. Cement and Concrete Composites, 21(1), 39-48.
24. Ghiassian, H., Poorebrahim, G., & Gray, D. H. (2004). Soil reinforcement with recycled carpet wastes. Waste Management & Research, 22(2), 108-114.
25. Forrest, M. (2014). Recycling and Re-use of Waste Rubber.
26. Ghiassian, H., Jamshidi, R., & Tabarsa, A. R. (2008). Dynamic performance of Toyoura sand reinforced with randomly distributed carpet waste strips. In Geotechnical earthquake engineering and soil dynamics IV (pp. 1-13).
27. Gupta, T., Chaudhary, S., & Sharma, R. K. (2016). Mechanical and durability properties of waste rubber fiber concrete with and without silica fume. Journal of cleaner production, 112, 702-711.
28. Ghadr, S., & Assadi-Langroudi, A. (2019). Effect of grain size and shape on undrained behaviour of sands. International Journal of Geosynthetics and Ground Engineering, 5(3), 1-9.
29. Ghadr S, Bahadori H (2019) Anisotropic behavior of fiber-reinforced sands. J Mater Civ Eng 31(11):04019270.
30. Ghadr S (2020) Effect of grain size on undrained anisotropic behaviour of sand–fibre composite. Transp Geotech 22:100323.
31. Ghadr, S., & Javan, A. (2020). Effect of shredded rubber on undrained shear strength of fine-grained sands. Transportation Infrastructure Geotechnology, 7(4), 562-589.
32. Ghadr, S., Chen, C. S., Liu, C. H., & Hung, C. (2022). Mechanical behavior of sands reinforced with shredded face masks. Bulletin of Engineering Geology and the Environment, 81(8), 1-21.
33. Hausmann, M. R., & Vagneron, J. (1977). Analysis of soil-fabric interaction. Pro c. International Cont. on the Use of Fabrics in Geotechnics, Paris, Vol. Ill, 139-144.
34. Holtz, R. D. (2001). Geosynthetics for soil reinforcement. Seattle, Washington.
35. Houlsby, G. T., Kelly, R. B., Huxtable, J., & Byrne, B. W. (2006). Field trials of suction caissons in sand for offshore wind turbine foundations. Géotechnique, 56(1), 3-10.
36. Hejazi, S. M., Sheikhzadeh, M., Abtahi, S. M., & Zadhoush, A. (2012). A simple review of soil reinforcement by using natural and synthetic fibers. Construction and building materials, 30, 100-116.
37. Hamidi, A., & Hooresfand, M. (2013). Effect of fiber reinforcement on triaxial shear behavior of cement treated sand. Geotextiles and Geomembranes, 36, 1-9.
38. Ibraim E, Diambra A, Wood DM, Russell AR (2010) Static liquefaction of fibre reinforced sand under monotonic loading. Geotext Geomembranes 28(4):374-385.
39. Jewell, R. A. (1980). Some effects of reinforcement on the mechanical behaivur of soils. Ph. D. Thesis, Univ. of Cambridge.
40. Jewell, R. A. (1996). Soil Reinforcement with Geotextiles, Construction Industry Research and Information Association. CIRIA Special publication, London, 123.
41. Jamellodin, Z., Talib, Z., Kolop, R., & Noor, N. (2010, August). The effect of oil palm fibre on strength behaviour of soil. In 3rd SANREM conf, kota kinabalu, Malaysia (pp. 3-5).
42. Jamshidi, R., Towhata, I., Ghiassian, H., & Tabarsa, A. R. (2010). Experimental evaluation of dynamic deformation characteristics of sheet pile retaining walls with fiber reinforced backfill. Soil Dynamics and Earthquake Engineering, 30(6), 438-446.
43. Kishore, J., & Rao, K. (1986). Moisture absorption characteristics of natural fiber composites. J Reinf Plast Compos, 5, 141-50.
44. Koerner, R. M. (1991). Geosynthetics in geotechnical engineering. In Foundation Engineering Handbook (pp. 796-813). Springer, Boston, MA.
45. Kokusho, T., Hara, T., & Hiraoka, R. (2004). Undrained shear strength of granular soils with different particle gradations. Journal of Geotechnical and Geoenvironmental Engineering, 130(6), 621-629.
46. Koerner, R. M. (2005). Designing with Geosynthetics. Prentice Hall, Upper Saddle River.
47. Khattak, M. J., & Alrashidi, M. (2006). Durability and mechanistic characteristics of fiber reinforced soil–cement mixtures. The International Journal of Pavement Engineering, 7(1), 53-62.
48. Karmacharya, R., & Acharya, I. P. (2017). Reinforcement of Soil Using Recycled Polyethylene Terephthalate (PET) Bottle Strips. In Proceedings of IOE Graduate Conference (Vol. 5).
49. Lade, P. V., & Ibsen, L. B. (1997). A study of the phase transformation and the characteristic lines of sand behaviour.
50. Li, C. (2005). Mechanical response of fiber-reinforced soil. The University of Texas at Austin.
51. Li, C., & Zornberg, J. G. (2019). Shear strength behavior of soils reinforced with weak fibers. Journal of Geotechnical and Geoenvironmental Engineering, 145(9), 06019006.
52. Louzada NDSL, Malko JAC, Casagrande, MDT (2019) Behavior of clayey soil reinforced with polyethylene terephthalate. J Mater Civ 31(10):04019218.
53. Martin, G. R., Seed, H. B., & Finn, W. L. (1975). Fundamentals of liquefaction under cyclic loading. Journal of the Geotechnical Engineering Division, 101(5), 423-438.
54. Ishihara, K. (1993). Liquefaction and flow failure during earthquakes. Geotechnique, 43(3), 351-451.
55. McGown, A., & Andrawes, K. Z. (1977). Influences of non-woven fabric inclusions on the stress strain behavior of a soil mass. In Int Conference on the Use of Fabrics in Geotech, Paper and Discussion, Paris, France, April 20-22, 1977. (Vol. 1, No. Volume 1).
56. McGown, A., Andrawes, K. Z., & Al-Hasani, M. M. (1978). Effect of inclusion properties on the behaviour of sand. Geotechnique, 28(3), 327-346.
57. Maher, M. H., & Gray, D. H. (1990). Static response of sands reinforced with randomly distributed fibers. Journal of geotechnical engineering, 116(11), 1661-1677.
58. Freilich, B. J., Li, C., & Zornberg, J. G. (2010, May). Effective shear strength of fiber-reinforced clays. In 9th international conference on geosynthetics, Brazil (pp. 1997-2000).
59. Michalowski, R. L., & Zhao, A. (1996). Failure of fiber-reinforced granular soils. Journal of geotechnical engineering, 122(3), 226-234.
60. Musenda, C. (1999). Effects of fiber reinforcement on strength and volume change behavior of expansive soils (Doctoral dissertation, MS thesis, The University of Texas at Arlington, Arlington, Texas).
61. Michalowski RL, Cermak J (2002) Strength anisotropy of fiber-reinforced sand. Comput Geosci 29(4):279-299.
62. Michalowski, R. L., & Čermák, J. (2003). Triaxial compression of sand reinforced with fibers. Journal of geotechnical and geoenvironmental engineering, 129(2), 125-136.
63. Miller, C. J., & Rifai, S. (2004). Fiber reinforcement for waste containment soil liners. Journal of Environmental Engineering, 130(8), 891-895.
64. Mishra, S., Mohanty, A. K., Drzal, L. T., Misra, M., & Hinrichsen, G. (2004). A review on pineapple leaf fibers, sisal fibers and their biocomposites. Macromolecular Materials and Engineering, 289(11), 955-974.
65. Mirzababaei, M., Arulrajah, A., Haque, A., Nimbalkar, S., & Mohajerani, A. (2018). Effect of fiber reinforcement on shear strength and void ratio of soft clay. Geosynthetics International, 25(4), 471-480.
66. Mirzababaei, M., Arulrajah, A., Horpibulsuk, S., Soltani, A., & Khayat, N. (2018). Stabilization of soft clay using short fibers and poly vinyl alcohol. Geotextiles and Geomembranes, 46(5), 646-655
67. Najjar, S. S., Sadek, S., & Alcovero, A. (2013). Quantification of model uncertainty in shear strength predictions for fiber-reinforced sand. Journal of geotechnical and geoenvironmental engineering, 139(1), 116-133.
68. Orman, M. E. (1994). Interface shear-strength properties of roughened HDPE. Journal of geotechnical engineering, 120(4), 758-761.
69. Puppala, A. J., & Musenda, C. (2000). Effects of fiber reinforcement on strength and volume change in expansive soils. Transportation Research Record, 1736(1), 134-140.
70. Sawicki, A. (1983). Plastic limit behavior of reinforced earth. Journal of geotechnical engineering, 109(7), 1000-1005.
71. Prabakar, J., & Sridhar, R. S. (2002). Effect of random inclusion of sisal fibre on strength behaviour of soil. Construction and Building materials, 16(2), 123-131.
72. Park, S. S., Kim, Y. S., Choi, S. G., & Shin, S. E. (2008). Unconfined compressive strength of cemented sand reinforced with short fibers. KSCE Journal of Civil and Environmental Engineering Research, 28(4C), 213-220.
73. Park, S. S. (2009). Effect of fiber reinforcement and distribution on unconfined compressive strength of fiber-reinforced cemented sand. Geotextiles and Geomembranes, 27(2), 162-166.
74. Park, S. S. (2011). Unconfined compressive strength and ductility of fiber-reinforced cemented sand. Construction and building materials, 25(2), 1134-1138.
75. Rowell, R. M. (2000). Characterization and factors effecting fiber properties. Natural polymers and agrofibers based composites.
76. Schofield, A. N., & Wroth, P. (1968). Critical state soil mechanics (Vol. 310). London: McGraw-hill.
77. SCHLOSSER, F., Vidal, H., & Legrand, J. (1969). REINFORCED EARTH.
78. Schlosser, F., & Long, N. T. (1974). Recent results of French research on reinforced earth. Journal of the construction Division, 100(3), 223-237.
79. Swamy, R. N. (Ed.). (1984). New reinforced concretes (Vol. 2). Surrey University Press.
80. Schlosser, F., & Bastick, M. (1991). Reinforced earth. In Foundation engineering handbook (pp. 778-795). Springer, Boston, MA.
81. Santoni, R. L., Tingle, J. S., & Webster, S. L. (2001). Engineering properties of sand-fiber mixtures for road construction. Journal of geotechnical and geoenvironmental engineering, 127(3), 258-268.
82. Sobhan, K., & Mashnad, M. (2002). Tensile strength and toughness of soil–cement–fly-ash composite reinforced with recycled high-density polyethylene strips. Journal of Materials in Civil Engineering, 14(2), 177-184.
83. Sobhan, K., & Mashnad, M. (2003). Fatigue behavior of a pavement foundation with recycled aggregate and waste HDPE strips. Journal of geotechnical and geoenvironmental engineering, 129(7), 630-638.
84. Sivakumar Babu, G. L., & Vasudevan, A. K. (2008). Strength and stiffness response of coir fiber-reinforced tropical soil. Journal of materials in civil engineering, 20(9), 571-577.
85. Shukla, S., Sivakugan, N., & Das, B. (2009). Fundamental concepts of soil reinforcement—an overview. International Journal of Geotechnical Engineering, 3(3), 329-342.
86. Subaida, E. A., Chandrakaran, S., & Sankar, N. (2009). Laboratory performance of unpaved roads reinforced with woven coir geotextiles. Geotextiles and geomembranes, 27(3), 204-210.
87. Sabbar, A. S., Chegenizadeh, A., & Nikraz, H. (2017). Static liquefaction of very loose sand–slag–bentonite mixtures. Soils and Foundations, 57(3), 341-356.
88. Shukla, S. K. (2017). Fundamentals of fibre-reinforced soil engineering. Singapore: Springer Singapore.
89. Sotomayor JMG, Casagrande MDT (2018) The performance of a sand reinforced with coconut fibers through plate load tests on a true scale physical model. Soils Rocks 41(3):361-8.
90. Safdar, M., Newson, T., & Shah, F. (2021). Consolidated drained (CID) behavior of fibre reinforced cemented Toyoura sand in triaxial loading conditions. International Journal of Geo-Engineering, 12(1), 1-21.
91. Tutumluer, E., Kim, I. T., & Santoni, R. L. (2004). Modulus anisotropy and shear stability of geofiber-stabilized sands. Transportation research record, 1874(1), 125-135.
92. Tang, C., Shi, B., Gao, W., Chen, F., & Cai, Y. (2007). Strength and mechanical behavior of short polypropylene fiber reinforced and cement stabilized clayey soil. Geotextiles and Geomembranes, 25(3), 194-202.
93. Tang, C. S., Shi, B., & Zhao, L. Z. (2010). Interfacial shear strength of fiber reinforced soil. Geotextiles and Geomembranes, 28(1), 54-62.
94. VIDAL, H. (1966). La Terre Armee', Annals of" L'Institut Technique de Batiment et des Travaux Public". Serie Materiaux, 30, 223-224.
95. Vidal, H. (1969). The principle of reinforced earth. Highway research record, (282).
96. Viswanadham, S. (1989). Bearing capacity of geosynthetic reinforced foundation on a swelling clay master of technology dissertation. Madras (India): Indian Institute of Technology.
97. Vaid, Y. P., & Sivathayalan, S. (2000). Fundamental factors affecting liquefaction susceptibility of sands. Canadian Geotechnical Journal, 37(3), 592-606.
98. Vasudev, D. (2007). Performance studies on rigid pavement sections built on stabilized sulfate soils. The University of Texas at Arlington.
99. Viswanadham, B. V. S., Phanikumar, B. R., & Mukherjee, R. V. (2009). Swelling behaviour of a geofiber-reinforced expansive soil. Geotextiles and Geomembranes, 27(1), 73-76.
100. Velloso RQ, Casagrande MDT, Junior EV, Consoli NC (2012) Simulation of the mechanical behavior of fiber reinforced sand using the discrete element method. Soils Rocks 35(2):201-206.
101. Valipour, M., Shourijeh, P. T., & Mohammadinia, A. (2021). Application of recycled tire polymer fibers and glass fibers for clay reinforcement. Transportation geotechnics, 27, 100474.
102. Wadell, H. (1932). Volume, shape, and roundness of rock particles. The Journal of Geology, 40(5), 443-451.
103. Yang, Z. (1972). Strength and deformation characteristics of reinforced sand. University of California, Los Angeles.
104. Yoshimine, M., & Ishihara, K. (1998). Flow potential of sand during liquefaction. Soils and foundations, 38(3), 189-198.
105. Yoshimine, M., Robertson, P. K., & Wride, C. E. (1999). Undrained shear strength of clean sands to trigger flow liquefaction. Canadian Geotechnical Journal, 36(5), 891-906.
106. Yetimoglu, T., & Salbas, O. (2003). A study on shear strength of sands reinforced with randomly distributed discrete fibers. Geotextiles and Geomembranes, 21(2), 103-110.
107. Yetimoglu, T., Inanir, M., & Inanir, O. E. (2005). A study on bearing capacity of randomly distributed fiber-reinforced sand fills overlying soft clay. Geotextiles and Geomembranes, 23(2), 174-183.
108. Yusoff, M. Z. M., Salit, M. S., Ismail, N., & Wirawan, R. (2010). Mechanical properties of short random oil palm fibre reinforced epoxy composites. Sains Malaysiana, 39(1), 87-92.
109. Yadav, J. S., & Tiwari, S. K. (2017). Effect of waste rubber fibres on the geotechnical properties of clay stabilized with cement. Applied Clay Science, 149, 97-110.
110. Yang, J., & Luo, X. D. (2018). The critical state friction angle of granular materials: does it depend on grading?. Acta Geotechnica, 13(3), 535-547.
111. Zhao, Y., Xiao, Z., Fan, C., Shen, W., Wang, Q., & Liu, P. (2020). Comparative mechanical behaviors of four fiber-reinforced sand cemented by microbially induced carbonate precipitation. Bulletin of Engineering Geology and the Environment, 79(6), 3075-3086.