簡易檢索 / 詳目顯示

研究生: 詹佳儒
Chan, Chia-Ru
論文名稱: 退火溫度對無機鈣鈦礦穩定性之探討
Characteristics and stability of inorganic halide perovskite with different annealing temperature
指導教授: 陳昭宇
Chen, Peter Chao-Yu
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 66
中文關鍵詞: 無機鈣鈦礦鈣鈦礦太陽能電池混和鹵素鈣鈦礦
外文關鍵詞: inorganic perovskite, mix halide perovskite, phase segregation
相關次數: 點閱:52下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鹵化物鈣鈦礦太陽能電池近幾年來快速的發展,為了未來於商業化上的應用,除了追求高光電轉換效率外,穩定性也成為了很重要的議題,現今高效率的鈣鈦礦太陽能電池多使用有機無機混成之鈣鈦礦,但其包含有機陽離子如甲基胺或甲脒胺,使得鈣鈦礦在熱穩定與溼氣穩定性仍然還有很大的挑戰。
    本論文使用銫離子取代甲基胺合成全無機鈣鈦礦CsPbIBr2,主要探討退火溫度對CsPbIBr2無機鈣鈦礦的影響,而鈣鈦礦的製備方式主要為一步溶液工程法,而無機鈣鈦礦之優點主要在於熱穩定較佳,本論文利用兩階段的退火方式,並藉由吸收圖譜、光致放光圖譜與X光繞射分析儀,分析溫度對CsPbIBr2薄膜光學性質及膜的品質的影響,再利用電子顯微鏡與聚焦離子束,觀察薄膜的表面形貌與厚度,結果顯示第一階段溫度主要影響薄膜的緻密性,第二階段主要影響結晶性、穩定性與晶粒大小,在前段溫度60°C與80°C下有較好的覆蓋率,藉由電子顯微鏡計算出的平均粒徑,與X光繞射分析儀計算特定繞射峰的半高寬,顯示在高溫下有較大的晶粒產生。在穩定性方面,於濕度70±5%未照光的情況下,低溫退火與高溫退火對鈣鈦礦穩定性有著明顯差異,可直接從肉眼明顯觀察到膜的變化,而在量測光致放光時,隨著量測時間越久,除了原有的光致放光波長外,會偵測到更長波長的訊號,主要是照光引致富含碘與富含溴的鈣鈦礦相分離,此現象是可逆的。最後於元件表現上,比較CsPbIBr2於多孔結構與平板結構上之差別,由電子顯微鏡發現鈣鈦礦無法完全進入到多孔氧化物載子傳輸層,降低元件的開路電壓與短路電流之,將多孔載子傳輸層改為平面型載子傳輸層作為平板型元件,提升鈣鈦礦與載子傳輸層的接合(junction),提升元件光伏表現,在80-250°C組合中,光電轉換效率達到7%。

    In this study, we used two-step thermal process to fabricate the CsPbIBr2 thin film. We adjusted the first step annealing temperature to control thin film surface coverage, and control grain size and film quality by second-step annealing. However, the contact between m-TiO2 and perovskite is poor or perovskite can’t be penetrated in the mesoporous TiO2. According this reason, the performance of the mesoporous device is not reproducible. We decided to use planer structure to replace mesoporous device. Finally, it improved open circuit voltage and efficiency. We achieved the best efficiency about 7% at 80-250°C at first and second step, respectively.

    中文摘要 I Extended Abstract II 致謝 VII 目錄 VIII 圖目錄 XI 表目錄 XIV 第一章緒論 1 1-1前言 1 1-2太陽能電池種類 1 1-2-1結晶矽太陽能電池 2 1-2-2化合物型太陽能電池 2 1-2-3有機太陽能電池 3 1-3太陽能電池工作原理 7 1-3-1太陽能光譜 7 1-3-2 Schockley Queisser 理論 8 1-4研究動機 10 第二章 文獻回顧 11 2-1無機鈣鈦礦電池 11 2-1-1 CsPbI3鈣鈦礦太陽能電池 11 2-1-2 CsPbIBr2 鈣鈦礦太陽能電池 13 2-1-3 CsPbBr3 鈣鈦礦太陽能電池 17 2-2無機鈣鈦礦之穩定性 19 2-2-1 CsPbI3 19 2-2-2 CsPbIBr2 21 2-2-3 CsPbBr3 22 2-3混鹵素鈣鈦礦之相分離 23 2-3-1 有機混鹵素鈣鈦礦 23 2-3-2 無機混鹵素鈣鈦礦 25 第三章 實驗方法及分析儀器 26 3-1 實驗藥品 26 3-2 實驗儀器 27 3-3 實驗設計與流程 28 3-3-1實驗流程 28 3-3-2鈣鈦礦元件製作 28 3-4 分析儀器 29 3-4-1紫外光-可見光光譜儀(Ultraviolet-visible spectroscopy,Uv-Vis) 29 3-4-2光致發光光譜儀(Photoluminescence,PL) 30 3-4-3掃描電子顯微鏡(Scanning Electron Microscope,SEM) 31 3-4-4 X光繞射分析儀(X-ray diffraction,XRD) 32 3-4-5直流電性量測系統(I-V) 33 3-4-6光電轉換效率(IPCE) 33 3-4-7凱爾文探針力顯微鏡(Kelvin Probe Force Microscope,KPFM) 34 第四章 實驗結果與討論 36 4-1不同溫度對鈣鈦礦之影響 36 4-1-1不同溫度對薄膜之分析:SEM 36 4-1-2不同溫度對薄膜之分析:XRD 41 4-1-3不同溫度對薄膜之分析:Uv-vis、PL 43 4-2不同溫度薄膜穩定性比較 45 4-2-1薄膜濕度穩定性 45 4-2-2熱穩定性 47 4-3元件分析 48 4-3-1溫度對元件之影響 48 4-3-2平板結構對元件之影響 50 4-3-3不同電極對元件之影響(平板結構) 54 4-4不同溫度之元件穩定性 56 4-4-1 元件濕度穩定性 56 4-4-2 元件光照穩定性 57 第五章 結論 58 5-1結論 58 5-2未來展望 58 參考文獻 60

    [1] M. Grätzel, "Photoelectrochemical cells," Nature, vol. 414, no. 6861, p. 338-344, 2001.
    [2] M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, "Solar cell efficiency tables (Version 45)," Progress in Photovoltaics: Research and Applications, vol. 23, no. 1, p. 1-9, 2015.
    [3] M. A. Green, Y. Hishikawa, E. D. Dunlop, D. H. Levi, J. Hohl-Ebinger, M. Yoshita, and A. W. Y. Ho-Baillie, "Solar cell efficiency tables (Version 53)," Progress in Photovoltaics: Research and Applications, vol. 27, no. 1, p. 3-12, 2019.
    [4] D. Kearns and M. Calvin, "Photovoltaic Effect and Photoconductivity in Laminated Organic Systems," The Journal of Chemical Physics, vol. 29, no. 4, p. 950-951, 1958.
    [5] C. W. Tang, "Two‐layer organic photovoltaic cell," Applied Physics Letters, vol. 48, no. 2, p. 183-185, 1986.
    [6] M. Matsumura, S. Matsudaira, H. Tsubomura, M. Takata, and H. Yanagida, "Sintered ZnO Electrode for Dye-sensitized Photocell," Journal of the Ceramic Association, Japan, vol. 87, no. 1003, p. 169-171, 1979.
    [7] B. O'Regan and M. Grätzel, "A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films," Nature, vol. 353, no. 6346, p. 737-740, 1991.
    [8] Y. Chen, L. Zhang, Y. Zhang, H. Gao, and H. Yan, "Large-area perovskite solar cells – a review of recent progress and issues". Royal Society Of Chemistry, 2018, p. 10489-10508.
    [9] A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, "Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells," Journal of the American Chemical Society, vol. 131, no. 17, p. 6050-6051, 2009.
    [10] H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J. E. Moser, M. Grätzel, and N.-G. Park, "Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%," Scientific Reports, vol. 2, p. 591, 2012.
    [11] M. Liu, M. B. Johnston, and H. J. Snaith, "Efficient planar heterojunction perovskite solar cells by vapour deposition," Nature, vol. 501, p. 395, 2013.
    [12] W. S. Yang, B.-W. Park, E. H. Jung, N. J. Jeon, Y. C. Kim, D. U. Lee, S. S. Shin, J. Seo, E. K. Kim, J. H. Noh, and S. I. Seok, "Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells," Science, vol. 356, no. 6345, p. 1376-1379, 2017.
    [13] C. J. Chen, "Physics of solar energy", Canada, John Wiley & Sons, p.1-5, 2011.
    [14] PVEDUCATION, "ASTM G-173-03," International standard ISO 9845-1, 1992.
    [15] D. Abou-Ras, T. Kirchartz, and U. Rau, "Advanced characterization techniques for thin film solar cells," Wiley Online Library, Germany, p. 5-9, 2011.
    [16] H. Choi, J. Jeong, H.-B. Kim, S. Kim, B. Walker, G.-H. Kim, and J. Y. Kim, "Cesium-doped methylammonium lead iodide perovskite light absorber for hybrid solar cells," Nano Energy, vol. 7, p. 80-85, 2014.
    [17] H. Chen, S. Xiang, W. Li, H. Liu, L. Zhu, and S. Yang, "Inorganic Perovskite Solar Cells: A Rapidly Growing Field," Solar RRL, vol. 2, no. 2, p. 1700188, 2018.
    [18] G. E. Eperon, G. M. Paterno, R. J. Sutton, A. Zampetti, A. A. Haghighirad, F. Cacialli, and H. J. Snaith, "Inorganic caesium lead iodide perovskite solar cells," Journal of Materials Chemistry A, vol. 3, no. 39, p. 19688-19695, 2015.
    [19] P. Luo, W. Xia, S. Zhou, L. Sun, J. Cheng, C. Xu, and Y. Lu, "Solvent Engineering for Ambient-Air-Processed, Phase-Stable CsPbI3 in Perovskite Solar Cells," The Journal of Physical Chemistry Letters, vol. 7, no. 18, p. 3603-3608, 2016.
    [20] L. A. Frolova, D. V. Anokhin, A. A. Piryazev, S. Y. Luchkin, N. N. Dremova, K. J. Stevenson, and P. A. Troshin, "Highly Efficient All-Inorganic Planar Heterojunction Perovskite Solar Cells Produced by Thermal Coevaporation of CsI and PbI2," The Journal of Physical Chemistry Letters, vol. 8, no. 1, p. 67-72, 2017.
    [21] A. Swarnkar, A. R. Marshall, E. M. Sanehira, B. D. Chernomordik, D. T. Moore, J. A. Christians, T. Chakrabarti, and J. M. Luther, "Quantum dot–induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics," Science, vol. 354, no. 6308, p. 92, 2016.
    [22] K. Wang, Z. Jin, L. Liang, H. Bian, H. Wang, J. Feng, Q. Wang, and S. Liu, "Chlorine doping for black γ-CsPbI3 solar cells with stabilized efficiency beyond 16%," Nano Energy, vol. 58, p. 175-182, 2019.
    [23] Q. Ma, S. Huang, X. Wen, M. A. Green, and A. W. Y. Ho-Baillie, "Hole Transport Layer Free Inorganic CsPbIBr2 Perovskite Solar Cell by Dual Source Thermal Evaporation," Advanced Energy Materials, vol. 6, no. 7, p. 1502202, 2016.
    [24] C. F. J. Lau, X. Deng, Q. Ma, J. Zheng, J. S. Yun, M. A. Green, S. Huang, and A. W. Y. Ho-Baillie, "CsPbIBr2 Perovskite Solar Cell by Spray-Assisted Deposition," ACS Energy Letters, vol. 1, no. 3, p. 573-577, 2016.
    [25] J. Liang, P. Zhao, C. Wang, Y. Wang, Y. Hu, G. Zhu, L. Ma, J. Liu, and Z. Jin, "CsPb0.9Sn0.1IBr2 Based All-Inorganic Perovskite Solar Cells with Exceptional Efficiency and Stability," Journal of the American Chemical Society, vol. 139, no. 40, p. 14009-14012, 2017.
    [26] Z. Guo, S. Teo, Z. Xu, C. Zhang, Y. Kamata, S. Hayase, and T. Ma, "Achievable high Voc of carbon based all-inorganic CsPbIBr2 perovskite solar cells through interface engineering," Journal of Materials Chemistry A, vol. 7, no. 3, p. 1227-1232, 2019.
    [27] W. Li, M. U. Rothmann, A. Liu, Z. Wang, Y. Zhang, A. R. Pascoe, J. Lu, L. Jiang, Y. Chen, F. Huang, Y. Peng, Q. Bao, J. Etheridge, U. Bach, and Y.-B. Cheng, "Phase Segregation Enhanced Ion Movement in Efficient Inorganic CsPbIBr2 Solar Cells," Advanced Energy Materials, vol. 7, no. 20, p. 1700946, 2017.
    [28] C. Liu, W. Li, J. Chen, J. Fan, Y. Mai, and R. E. I. Schropp, "Ultra-thin MoOx as cathode buffer layer for the improvement of all-inorganic CsPbIBr2 perovskite solar cells," Nano Energy, vol. 41, p. 75-83, 2017.
    [29] Q. Zhang, W. Zhu, D. Chen, Z. Zhang, Z. Lin, J. Chang, J. Zhang, C. Zhang, and Y. Hao, "Light Processing Enables Efficient Carbon-Based, All-Inorganic Planar CsPbIBr2 Solar Cells with High Photovoltages," ACS Applied Materials & Interfaces, vol. 11, no. 3, p. 2997-3005, 2019.
    [30] W. Zhu, Q. Zhang, D. Chen, Z. Zhang, Z. Lin, J. Chang, J. Zhang, C. Zhang, and Y. Hao, "Intermolecular Exchange Boosts Efficiency of Air-Stable, Carbon-Based All-Inorganic Planar CsPbIBr2 Perovskite Solar Cells to Over 9%," Advanced Energy Materials, vol. 8, no. 30, p. 1802080, 2018.
    [31] W. Zhu, Z. Zhang, W. Chai, Q. Zhang, D. Chen, Z. Lin, J. Chang, J. Zhang, C. Zhang, and Y. Hao, "Band Alignment Engineering Towards High Efficiency Carbon-Based Inorganic Planar CsPbIBr2 Perovskite Solar Cells," ChemSusChem, vol. 12, no. 10, p. 2318-2325, 2019.
    [32] B. Yang, M. Wang, X. Hu, T. Zhou, and Z. Zang, "Highly efficient semitransparent CsPbIBr2 perovskite solar cells via low-temperature processed In2S3 as electron-transport-layer," Nano Energy, vol. 57, p. 718-727, 2019.
    [33] Z. Wang, A. K. Baranwal, M. A. Kamarudin, M. Pandey, T. Ma, and S. Hayase, "Xanthate-induced sulfur doped all-inorganic perovskite with superior phase stability and enhanced performance," Nano Energy, vol. 59, p. 258-267, 2019.
    [34] W. Zhu, Q. Zhang, C. Zhang, Z. Zhang, D. Chen, Z. Lin, J. Chang, J. Zhang, and Y. Hao, "Aged Precursor Solution toward Low-Temperature Fabrication of Efficient Carbon-Based All-Inorganic Planar CsPbIBr2 Perovskite Solar Cells," ACS Applied Energy Materials, vol. 1, no. 9, p. 4991-4997, 2018.
    [35] J. Lu, S.-C. Chen, and Q. Zheng, "Defect Passivation of CsPbIBr2 Perovskites for High-Performance Solar Cells with Large Open-Circuit Voltage of 1.28 V," ACS Applied Energy Materials, vol. 1, no. 11, p. 5872-5878, 2018.
    [36] J. Liang, Z. Liu, L. Qiu, Z. Hawash, L. Meng, Z. Wu, Y. Jiang, L. K. Ono, and Y. Qi, "Enhancing Optical, Electronic, Crystalline, and Morphological Properties of Cesium Lead Halide by Mn Substitution for High-Stability All-Inorganic Perovskite Solar Cells with Carbon Electrodes," Advanced Energy Materials, vol. 8, no. 20, p. 1800504, 2018.
    [37] N. Li, Z. Zhu, J. Li, A. K.-Y. Jen, and L. Wang, "Inorganic CsPb1−xSnxIBr2 for Efficient Wide-Bandgap Perovskite Solar Cells," Advanced Energy Materials, vol. 8, no. 22, p. 1800525, 2018.
    [38] M. Kulbak, D. Cahen, and G. Hodes, "How Important Is the Organic Part of Lead Halide Perovskite Photovoltaic Cells Efficient CsPbBr3 Cells," The Journal of Physical Chemistry Letters, vol. 6, no. 13, p. 2452-2456, 2015.
    [39] M. Kulbak, S. Gupta, N. Kedem, I. Levine, T. Bendikov, G. Hodes, and D. Cahen, "Cesium Enhances Long-Term Stability of Lead Bromide Perovskite-Based Solar Cells," The Journal of Physical Chemistry Letters, vol. 7, no. 1, p. 167-172, 2016.
    [40] X. Chang, W. Li, L. Zhu, H. Liu, H. Geng, S. Xiang, J. Liu, and H. Chen, "Carbon-Based CsPbBr3 Perovskite Solar Cells: All-Ambient Processes and High Thermal Stability," ACS Applied Materials & Interfaces, vol. 8, no. 49, p. 33649-33655, 2016.
    [41] J. Liang, C. Wang, Y. Wang, Z. Xu, Z. Lu, Y. Ma, H. Zhu, Y. Hu, C. Xiao, X. Yi, G. Zhu, H. Lv, L. Ma, T. Chen, Z. Tie, Z. Jin, and J. Liu, "All-Inorganic Perovskite Solar Cells," Journal of the American Chemical Society, vol. 138, no. 49, p. 15829-15832, 2016.
    [42] P. Teng, X. Han, J. Li, Y. Xu, L. Kang, Y. Wang, Y. Yang, and T. Yu, "Elegant Face-Down Liquid-Space-Restricted Deposition of CsPbBr3 Films for Efficient Carbon-Based All-Inorganic Planar Perovskite Solar Cells," ACS Applied Materials & Interfaces, vol. 10, no. 11, p. 9541-9546, 2018.
    [43] J. Duan, Y. Zhao, B. He, and Q. Tang, "High-Purity Inorganic Perovskite Films for Solar Cells with 9.72 % Efficiency," Angewandte Chemie International Edition, vol. 57, no. 14, p. 3787-3791, 2018.
    [44] P. Luo, Y. Zhou, S. Zhou, Y. Lu, C. Xu, W. Xia, and L. Sun, "Fast anion-exchange from CsPbI3 to CsPbBr3 via Br2-vapor-assisted deposition for air-stable all-inorganic perovskite solar cells," Chemical Engineering Journal, vol. 343, p. 146-154, 2018.
    [45] K. C. Tang, P. You, and F. Yan, "Highly Stable All-Inorganic Perovskite Solar Cells Processed at Low Temperature," Solar RRL, vol. 2, no. 8, p. 1800075, 2018.
    [46] H. Li, G. Tong, T. Chen, H. Zhu, G. Li, Y. Chang, L. Wang, and Y. Jiang, "Interface engineering using a perovskite derivative phase for efficient and stable CsPbBr3 solar cells," Journal of Materials Chemistry A, vol. 6, no. 29, p. 14255-14261, 2018.
    [47] Y. Zhao, J. Duan, H. Yuan, Y. Wang, X. Yang, B. He, and Q. Tang, "Using SnO2 QDs and CsMBr3 (M = Sn, Bi, Cu) QDs as Charge-Transporting Materials for 10.6%-Efficiency All-Inorganic CsPbBr3 Perovskite Solar Cells with an Ultrahigh Open-Circuit Voltage of 1.610 V," Solar RRL, vol. 3, no. 3, p. 1800284, 2019.
    [48] X. Liu, X. Tan, Z. Liu, H. Ye, B. Sun, T. Shi, Z. Tang, and G. Liao, "Boosting the efficiency of carbon-based planar CsPbBr3 perovskite solar cells by a modified multistep spin-coating technique and interface engineering," Nano Energy, vol. 56, p. 184-195, 2019.
    [49] F. Li, Y. Pei, F. Xiao, T. Zeng, Z. Yang, J. Xu, J. Sun, B. Peng, and M. Liu, "Tailored dimensionality to regulate the phase stability of inorganic cesium lead iodide perovskites," Nanoscale, vol. 10, no. 14, p. 6318-6322, 2018.
    [50] Y. Wang, T. Zhang, M. Kan, Y. Li, T. Wang, and Y. Zhao, "Efficient α-CsPbI3 Photovoltaics with Surface Terminated Organic Cations," Joule, vol. 2, no. 10, p. 2065-2075, 2018.
    [51] Y. Wang, T. Zhang, M. Kan, and Y. Zhao, "Bifunctional Stabilization of All-Inorganic α-CsPbI3 Perovskite for 17% Efficiency Photovoltaics," Journal of the American Chemical Society, vol. 140, no. 39, p. 12345-12348, 2018.
    [52] T. Zhang, M. I. Dar, G. Li, F. Xu, N. Guo, M. Grätzel, and Y. Zhao, "Bication lead iodide 2D perovskite component to stabilize inorganic α-CsPbI3 perovskite phase for high-efficiency solar cells," Science Advances, vol. 3, no. 9, p. e1700841, 2017.
    [53] B. Li, Y. Zhang, L. Fu, T. Yu, S. Zhou, L. Zhang, and L. Yin, "Surface passivation engineering strategy to fully-inorganic cubic CsPbI3 perovskites for high-performance solar cells," Nature Communications, vol. 9, no. 1, p. 1076, 2018.
    [54] Q. Wang, X. Zheng, Y. Deng, J. Zhao, Z. Chen, and J. Huang, "Stabilizing the α-Phase of CsPbI3 Perovskite by Sulfobetaine Zwitterions in One-Step Spin-Coating Films ." Joule, vol. 1, no. 2, p. 371-382. 2017.
    [55] Y. Hu, F. Bai, X. Liu, Q. Ji, X. Miao, T. Qiu, and S. Zhang, "Bismuth Incorporation Stabilized α-CsPbI3 for Fully Inorganic Perovskite Solar Cells," ACS Energy Letters, vol. 2, no. 10, p. 2219-2227, 2017.
    [56] C. F. J. Lau, X. Deng, J. Zheng, J. Kim, Z. Zhang, M. Zhang, J. Bing, B. Wilkinson, L. Hu, R. Patterson, S. Huang, and A. Ho-Baillie, "Enhanced performance via partial lead replacement with calcium for a CsPbI3 perovskite solar cell exceeding 13% power conversion efficiency," Journal of Materials Chemistry A, vol. 6, no. 14, p. 5580-5586, 2018.
    [57] S. Xiang, W. Li, Y. Wei, J. Liu, H. Liu, L. Zhu, and H. Chen, "The synergistic effect of non-stoichiometry and Sb-doping on air-stable α-CsPbI3 for efficient carbon-based perovskite solar cells," Nanoscale, vol. 10, no. 21, p. 9996-10004, 2018.
    [58] Y. Li, J. Duan, H. Yuan, Y. Zhao, B. He, and Q. Tang, "Lattice Modulation of Alkali Metal Cations Doped Cs1−xRxPbBr3 Halides for Inorganic Perovskite Solar Cells," Solar RRL, vol. 2, no. 10, p. 1800164, 2018.
    [59] J. Duan, Y. Zhao, X. Yang, Y. Wang, B. He, and Q. Tang, "Lanthanide Ions Doped CsPbBr3 Halides for HTM-Free 10.14%-Efficiency Inorganic Perovskite Solar Cell with an Ultrahigh Open-Circuit Voltage of 1.594 V," Advanced Energy Materials, vol. 8, no. 31, p. 1802346, 2018.
    [60] Y. Shao, Y. Fang, T. Li, Q. Wang, Q. Dong, Y. Deng, Y. Yuan, H. Wei, M. Wang, A. Gruverman, J. Shield, and J. Huang, "Grain boundary dominated ion migration in polycrystalline organic–inorganic halide perovskite films," Energy & Environmental Science, vol. 9, no. 5, p. 1752-1759, 2016.
    [61] E. T. Hoke, D. J. Slotcavage, E. R. Dohner, A. R. Bowring, H. I. Karunadasa, and M. D. McGehee, "Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics," Chemical Science, vol. 6, no. 1, p. 613-617, 2015.
    [62] P. Gratia, G. Grancini, J.-N. Audinot, X. Jeanbourquin, E. Mosconi, I. Zimmermann, D. Dowsett, Y. Lee, M. Grätzel, F. De Angelis, K. Sivula, T. Wirtz, and M. K. Nazeeruddin, "Intrinsic Halide Segregation at Nanometer Scale Determines the High Efficiency of Mixed Cation/Mixed Halide Perovskite Solar Cells," Journal of the American Chemical Society, vol. 138, no. 49, p. 15821-15824, 2016.
    [63] P. Nandi, C. Giri, D. Swain, U. Manju, S. D. Mahanti, and D. Topwal, "Temperature Dependent Photoinduced Reversible Phase Separation in Mixed-Halide Perovskite," ACS Applied Energy Materials, vol. 1, no. 8, p. 3807-3814, 2018.
    [64] R. E. Beal, D. J. Slotcavage, T. Leijtens, A. R. Bowring, R. A. Belisle, W. H. Nguyen, G. F. Burkhard, E. T. Hoke, and M. D. McGehee, "Cesium Lead Halide Perovskites with Improved Stability for Tandem Solar Cells," The Journal of Physical Chemistry Letters, vol. 7, no. 5, p. 746-751, 2016.
    [65] W. Melitz, J. Shen, A. C. Kummel, and S. Lee, "Kelvin probe force microscopy and its application," Surface Science Reports, vol. 66, no. 1, p. 1-27, 2011.

    無法下載圖示 校內:2024-08-29公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE