簡易檢索 / 詳目顯示

研究生: 蔡佳偉
tsai, jia-wei
論文名稱: 以雙裂縫試驗量測膠結石膏II型破裂韌度之研究
The Measurement of the Mode II Fracture Toughness of Adhesive Gypsum Using Short Beam Compression Test
指導教授: 王建力
Wang, Chein-lee
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 188
中文關鍵詞: 側向壓力裂縫補強破裂韌度膠結
外文關鍵詞: fracture toughness, adhesive, confining stress, crack repairing
相關次數: 點閱:91下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究進行II型雙裂縫試驗以探討無膠結石膏(完整石膏)與三種膠結劑:環氧樹脂(3:1)、環氧樹脂(1:1)、不飽和聚脂樹脂(POLY),相互膠結製成的膠結石膏之II型破裂韌度。在膠結石膏方面將以岩石表面裂縫補強為主軸,分析其補強後之破裂韌度值分佈。並且在本研究試驗過程加入側向壓力,並研究側向壓力對各雙裂縫試體的影響。
    本研究發現由完整石膏雙裂縫試驗得知,有側向壓力試體剪力強度明顯高於無側向壓力的試體,且其裂縫間距比必須介於0.1~0.25之間。當裂縫間距比大於0.4時,試體破壞路徑將不會沿著裂縫尖端垂直破壞,即不會形成剪切破壞,而是形成沿著裂縫尖端水平拉伸之拉力破壞。比較無側向壓力與有側向壓力下之雙裂縫試體發現,隨著側向壓力增加而裂縫尖端張應力會明顯減少,將有利於產生II型剪力破壞。在側向壓力下發現不飽和聚脂樹脂(POLY)為最適合裂縫補強之材料。
    本研究進一步利用數值分析軟體ANSYS分析出各雙裂縫試體在側向壓力下之破裂韌度,最後利用破裂韌度迴歸曲線而得到破裂韌度迴歸公式。
    利用本研究雙裂縫試驗參數代入前人(王凱正,2007)之單壓雙裂縫試體之II型應力強度因子(KII)迴歸公式,及最後本研究再以ANSYS分析模擬(Ko & Kemeny,2006)Flagstaff砂岩裂縫尖端破裂韌度,再與其利用FRANC2D/L分析結果相互驗證,發現側向壓力並不會影響裂縫幾何校正係數,且破裂韌度值誤差非常接近。

    This study attempts to measure the Mode II (sliding mode) fracture toughness of intact gypsum and adhesive gypsum under the short beam compression testing. The gypsum is simulated as the rock-like material and three adhesives including Epoxy(3:1), Epoxy(1:1), Unsaturated Polyester Resin(POLY), are evaluated for their availabilities in surfacial crack repairing. The resulting values of Mode II fracture toughness are analyzed. The effect of confining stress is also investigated in this study.
    The experimental setup is based on the configuration of the short beam compression with lateral confinement. This study examines the influence of the seperation of crack interval and the effect of confinement on the shear strength of the specimen. It is found that the testing condition is favorable for Mode II when the seperation ratio is between 0.1 and 0.25 for the unconfined test. When the seperation ratio exceeds above specified range, the fracture condition will result in an undesirable tensile failure. The increase in confining stress decreases tensile stress on the slot tip and hence obtains a favorable mode II condition. This study finds that the Unsaturated Polyester Resin(POLY) adhesive gypsum has the best response under confining condition.
    This study also uses a finite element package ANSYS to evaluate the correlation equation of critical stress intensity factor (fracture toughness) for the short beam compression test. The regression formula for fracture toughness is derived. The regression formula derived from this study is also compared with the results obtained from Wang(2007) and Ko & Kemeny(2006). The comparison is found to be consistent.

    摘要 I Abstract II 誌謝 III 目錄 V 表目錄 XI 圖目錄 XV 符號表 XXIV 第一章 緒論 1 1-1 研究背景與動機與目的 1 1-2 研究內容及流程 3 第二章 文獻回顧 5 2-1 破裂力學 5 2-2 線彈性破裂力學 5 2-3 人工模擬岩石材料與裂縫補強膠結劑之選擇及條件 8 2-4 測定II型破裂韌度方法相關研究 18 2-5 測定膠結II型破裂韌度方法相關研究 32 第三章 試驗計畫 45 3-1 試驗設備 45 3-1-1 側向壓力系統 45 3-1-2 軸向載重壓力系統 48 3-1-3 資料擷取系統 49 3-2 試驗材料與製作 50 3-2-1 試驗材料 50 3-2-1-1石膏 50 3-2-1-1膠結劑 53 3-2-2 雙裂縫試驗試體厚度之決定 55 3-2-3 完整石膏試體製作流程 56 3-2-4 膠結石膏試體製作流程 58 3-3 雙裂縫試驗 62 3-3-1 完整石膏與膠結石膏試體雙裂縫試驗(無側向壓力) 62 3-3-2 完整石膏與膠結石膏試體雙裂縫試驗(有側向壓力) 63 第四章 試驗結果之分析與討論 65 4-1 完整石膏雙裂縫試驗結果 66 4-1-1 完整石膏試體無側向壓力雙裂縫試驗結果 66 4-1-2 完整石膏試體有側向壓力雙裂縫試驗結果 70 4-2 膠結石膏試體雙裂縫試驗結果 73 4-2-1 膠結石膏試體無側向壓力雙裂縫試驗結果 73 4-2-2 膠結石膏試體有側向壓力雙裂縫試驗結果 76 4-2-2-1膠結石膏試體(環氧樹脂3:1)有側向壓力雙裂縫試驗結果 76 4-2-2-2 膠結石膏試體(環氧樹脂1:1)有側向壓力雙裂縫試驗結果 79 4-2-2-3 膠結石膏試體(不飽和聚脂樹脂:POLY)有側向壓力雙裂縫試 驗結果 82 4-3 實驗成果總結 85 第五章 數值分析 87 5-1 ANSYS數值解 87 5-1-1 程式架構 87 5-1-2 程式簡介 91 5-1-3 數值模型建立步驟 95 5-1-4 求取完整石膏試體裂縫尖端破裂韌度值之方法 98 5-1-5 求取膠結石膏試體裂縫尖端破裂韌度值之方法 99 5-2 案例分析1 100 5-2-1 石膏試體無側向壓力及有側向壓力裂縫尖端應力分佈 100 5-2-2 完整石膏試體無側向壓力破裂韌度值之求取 101 5-2-3 完整石膏試體有側向壓力破裂韌度值之求取 104 5-2-4 膠結石膏試體(環氧樹脂3:1)無側向壓力破裂韌度值之求取 106 5-2-5 膠結石膏試體(環氧樹脂3:1)有側向壓力破裂韌度值之求取 108 5-2-6 膠結石膏試體(環氧樹脂1:1)無側向壓力破裂韌度值之求取 110 5-2-7 膠結石膏試體(環氧樹脂1:1)有側向壓力破裂韌度值之求取 112 5-2-8 膠結石膏試體(不飽和聚脂樹脂:POLY)無側向壓力破 裂韌度值之求取 114 5-2-9 膠結石膏試體(不飽和聚脂樹脂:POLY)有側向壓力破 裂韌度值之求取 116 5-3 推求案例1有側向壓力破裂韌度迴歸公式 118 5-3-1 推求有側向壓力破裂韌度迴歸公式之步驟 118 5-3-2 完整石膏試體破裂韌度迴歸公式 119 5-3-3 膠結石膏試體(環氧樹脂3:1)破裂韌度迴歸公式 121 5-3-4 膠結石膏試體(環氧樹脂1:1)破裂韌度迴歸公式 123 5-3-5 膠結石膏試體(不飽和聚脂樹脂:POLY)破裂韌度迴歸公式 125 5-4 案例分析2 127 5-4-1 完整石膏試體無側向壓力破裂韌度值之求取 127 5-4-2 完整石膏試體有側向壓力破裂韌度值之求取 130 5-4-3 膠結石膏(環氧樹脂3:1)無側向壓力破裂韌度值之求取 132 5-4-4 膠結石膏(環氧樹脂3:1)有側向壓力破裂韌度值之求取 134 5-4-5 膠結石膏(環氧樹脂1:1)無側向壓力破裂韌度值之求取 136 5-4-6 膠結石膏(環氧樹脂1:1)有側向壓力破裂韌度值之求取 138 5-4-7 膠結石膏(不飽和聚脂樹脂:POLY)無側向壓力破裂韌度 值之求取 140 5-4-8 膠結石膏(不飽和聚脂樹脂:POLY)有側向壓力破裂韌度 值之求取 142 5-5 推求案例2有側向壓力破裂韌度迴歸公式 144 5-5-1 完整石膏試體破裂韌度迴歸公式 144 5-5-2 膠結石膏試體(環氧樹脂3:1)破裂韌度迴歸公式 146 5-5-3 膠結石膏試體(環氧樹脂1:1)破裂韌度迴歸公式 148 5-5-4 膠結石膏試體(不飽和聚脂樹脂:POLY)破裂韌度迴歸公式 150 5-6 推求Ko & Kemeny破裂韌度迴歸公式及比較 152 5-7 分析結果總結 158 5-7-1 完整石膏無側向壓力分析結果與比較(案例1與案例2) 158 5-7-2 完整與膠結石膏有側向壓力分析結果(案例1與案例2) 161 5-7-3 模擬推求Ko & Kemeny(2006) Flagstaff砂岩破裂韌度值分析 結果 167 第六章 結論與建議 169 6-1 結論 169 6-2 建議 171 參考文獻 173 附錄A 試體破裂面情形 179

    1. 王桂堯、孫宗穎、黎振茲,’’岩石II型裂紋擴展的一般規
    律’’,中南礦 冶學院學報,1994。
    2. 王桂堯,’’剪切斷裂韌度(KIIC)確定之研究’’,岩石力學與
    工程學報, 2002。
    3. 王凱正,’’以單壓雙裂縫試驗量測石膏II型破裂韌度之研
    究’’,國立成功大學資源工程研究所碩士論文,2007 。

    4. 林鴻州,’’模擬岩石裂面形態及機制初探’’,國立臺灣大學
    土木工程研究所碩士論文,2001 。
    5. 郝彩哲,’’混凝土剪切斷裂的尺寸效應試驗研究’’,燕山大
    學學報,2005。
    6. 張培聖,’’混凝土裂縫修補材料之研究’’,私立朝陽科技大
    學土木工 程研究所碩士論文,2002。
    7. 黃國彰,’’人工岩石材料之節理面的剪力強度研究’’,國立
    成功大學土木工程研究所碩士論文,2004。
    8. 楊長義,’’模擬規則節理面岩體強度與變行性之研究’’,國
    立臺灣大 學土木工程研究所博士論文,1992。
    9. 董新龍、王禮立、虞吉林,’’兩種類型的剪切斷裂韌度及其裂
    紋擴展’’,寧波大學學報,2000。
    10. 鄭富書,’’軟弱岩盤承載行為研究(I)’’,行政院國家科學
    委員會專題研究計畫成果報告,1994。
    11. 應傳智,’’人工軟弱岩石之研究’’,國立臺灣大學土木工程
    研究所博士論文,1995。
    12. Al-Mandil, M.Y., Khalil, H. S., Baluch, M. H. and Azad,
    A. K.,“Performance of Epoxy-Repaired Concrete under
    Thermal Cycling,”Cement and Concrete Composites ,
    Vol.12,No.1,pp.47-52,1990.
    13. Abu-Tair, A.I., Rigden, S.R., and Burley, E.,“Testing
    the Bond between Repair Materials and Concrete
    Substrate,”ACI Materials Journal, Vol.93,No.6,
    pp.553-558,1996.
    14. Barton, N. R.,’’A Low Strength Material for
    Simulation of the Mechanical Properties of Intact Rock
    in Rock Mechanics Model ”,Proc. of the 2nd Cong.
    of ISRM, Begrad, pp. 3-15, 1970.
    15. Brown, E.T., ’’Rock characterization testing and
    monitoring ’’, ISRM suggested methods,Pergamon
    press, Oxford, 1981.
    16. Blackman , B.R.K., Kinloch , A.J., Paraschi, M.,“ The
    effects of disbonds on the pure mode II stress
    intensity factor of aluminium plate reinforced with
    bonded composite materials,” Engineering Fracture
    Mechanics Vol.72 pp.877-897, 2005.
    17. Chen, C., ’’On the determination of KII for the sigle
    edge cracked plate in four-point bending’’, Proc.
    2nd conf. Fract. mech, 1976.
    18. Deere, D. E., ’’Geological Considerations’’, In
    K.G. Stagg and O.C.Zienkiewicz(eds.), Rock Mechanics in
    Engineering Practice, London, John Wiley & Sons, pp.1-
    20, 1968.
    19. Davies, T. G. Morgan, and A. W. Yim., ’’The Finite
    Element Analysis of A Punch-Through Shear Specimen In
    Mode II’’, Int. J.Fracture 28, pp.3-8,1985.
    20. Einstein, H. H, and R. A. Nelson, R. W. Bruhn and R.
    Hirsehfeld, ”Model Studies of Jointed-Rock
    Behavior”, Proc. of 11th U.S. Symp. On Rock Mech.,
    Berkeley, pp.83-103, 1969.
    21. Edde, F.C. and Verreman, Y., “ Nominally constant
    strain energy release rate specimen for the study of
    Mode II fracture and fatigue in adhesively bonded
    joints,” Int.J. Adhesion and Adhesives Vol.15, pp.29-
    32,1995.
    22. Griffith,A.A.,“The Phenomena of Rupture and Flow in
    Solids,” Phil. Trans. Roy.Soe., A221, pp.163,1921.
    23. Goodman, R. E,’’Introduction to Rock
    Mechanics’’,John Wiley & Sons , pp.50-95,1980.
    24. Hondros, G., “The evaluation of Poisson’s ratio and
    the modulus of mate- rials of a low tensile resistance
    by the Brazilian (Indirect tensile) test with
    particular reference to concrete”, Aust. J. App. Sci.,
    Vol.10, pp. 428-434, 1959.
    25. Hoek, E. and Brown, E.T., “Underground Excavation in
    Rock”, Chapter 6,The Institution of Mining and
    Metallurgy, London, pp.131-182, 1980.
    26. Hutchinson, J. W., and Suo, Z., “Mixed Mode Cracking
    in Layered Materials,”Advances in Applied Mechanics,
    Vol. 29, pp. 63-191, 1992.
    27. Indraratna, B., ’’Development and Applications of a
    Synthetic Material to Simulate Soft Sedimentary
    Rocks”, Geotechnique 40, No.2, pp. 189-200,1990.
    28. KO, T. Y. and KEMENY. J.,’’Determination of mode II
    stress intensity factor using short beam compression
    test, Department of Mining and Geological
    Engineering’’, The University of Arizona, U.S.A,
    2006.
    29. Liu, K. and Barrt, B.I.G. & Wattkins, j. ,’’Mode II
    fracture of fibrereinfor-ced concrete materials’’,
    Int.J.Cement Composites and Lightweight Conc- rete, 7,
    93-101, 1985.
    30. Liu,S. Y., Mei, and Wu, T. Y., “Bimaterial Interfacial
    Crack Growth as a Function of Mode-Mixity,” IEEE
    Trans. Comp., Pkg., Manuf act. Technol., Vol.18,
    pp. 618-626, 1995.
    31. Mulville, D. R. and Mast, P. W., “ Strain Energy
    Release Rate for Interfac-ial Cracks Between Dissimilar
    Media. Engineering and Fracture Mechan-ics”, pp. 555-
    565, 1976.
    32. Moon, H. and Hucka, V. J.,’’Investigation of
    Equivalent Materials for Physical Modelling of Utah
    Coal Seams”, Proc. 26th Symp. On Rock Mech., Rapid
    City, pp. 331-367, 1986.
    33. Mutlu,O., A. Bobet,“Slip initiation on frictional
    fractures, ” Engineering Fracture Mechanics Vol.72,
    pp.729–747, 2005.
    34. Mutlu,O., A. Bobet, “Slip propagation along frictional
    discontinuities, ”International Journal of Rock
    Mechanics & Mining Sciences Vol.43,pp.860–876, 2006.
    35. Ouinas, D., B. Serier , B.B. Bouiadjra,“ The effects
    of disbonds on the pure mode II stress intensity factor
    of aluminium plate reinforced with bonded composite
    materials,” Computational MaterialsScience Vol.39
    pp.782–787, 2007.
    36. Pareek, S.N., Ohama,Y. and Demura, K.,“Evaluation
    Method for Adhesion Test Results of Bonded Mortars to
    Concrete Substrates by Square Optimization Method, ”
    ACI Materials Journal, Vol.92, No.4, pp.355-360,1995.
    37. Pang, H. L. J. and C. W. Seetoh. “A Compact Mixed Mode
    (CMM) Fracture Specimen for Adhesive Bounded Joints,”
    Engineering Fracture Mechanics Vol. 57., No.1., pp57-
    65, 1997.
    38. Pang, H. L. J., X. Zhang, X. Shi, and Z. P. Wang,
    “Interfacial Fracture To- ungness Test Methodology for
    Adhesive Bounded Joints,” IEEE Transact- ions on
    Electronics Packaging Technologies, Vol. 25, No.2, June
    2002.
    39. Rosenblad, J. L.,’’Development of a rocklike
    material’’,Proc.10th Symp.on Rock Mech, pp.331-361,
    1968.
    40. Stimpson, B., ’’Modelling Material for Engineering
    Rock Mechanics’’,Int. J. Rock Mech. Min. Sci. Vol.7,
    pp.77-122, 1968.
    41. Suo, Z. Mechanics of Interface Fracture : Ph. D.
    Dissertation, Cambridge:Harvard Univ. 1989.
    42. Small , J.,“Evaluating Structural Crack Repair, ”
    Concrete International, pp.27-30,1995.
    43. Tu, L.,and Kruger, D.,“Engineering Properties of Epoxy
    Resins Used as Concrete Adhesives, ”ACI Materials
    Journal, Vol.93, No.1, pp.26-35, 1996.
    44. Watkins, J.,“ FRACTURE TOUGHNESS TEST FOR SOIL-CEMENT
    SAMPLES IN MODE II,”Int. Journ. of Fracture Vol.23 ,
    RI35-RI38, 1983.
    45. Watkins, J. and Liu, K., B.I.G.,’’A finite eiement
    study of the short beam test specimen test specimen
    under mode II loading’’, Int.J.Cement Com- posites
    and Lightwight Concrete,7 , pp.39-47, 1985.
    46. Xu Roy, L., Sreeparna Sengupta, Huacheng Kuai ,“An
    experimental and numerical investigation of adhesive
    bonding strengths of polymer materials, ”International
    Journal of Adhesion & Adhesives Vol.24, pp.455-460,
    2004.

    下載圖示 校內:立即公開
    校外:2008-07-09公開
    QR CODE