| 研究生: |
蔡佳偉 tsai, jia-wei |
|---|---|
| 論文名稱: |
以雙裂縫試驗量測膠結石膏II型破裂韌度之研究 The Measurement of the Mode II Fracture Toughness of Adhesive Gypsum Using Short Beam Compression Test |
| 指導教授: |
王建力
Wang, Chein-lee |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 188 |
| 中文關鍵詞: | 側向壓力 、裂縫補強 、破裂韌度 、膠結 |
| 外文關鍵詞: | fracture toughness, adhesive, confining stress, crack repairing |
| 相關次數: | 點閱:91 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究進行II型雙裂縫試驗以探討無膠結石膏(完整石膏)與三種膠結劑:環氧樹脂(3:1)、環氧樹脂(1:1)、不飽和聚脂樹脂(POLY),相互膠結製成的膠結石膏之II型破裂韌度。在膠結石膏方面將以岩石表面裂縫補強為主軸,分析其補強後之破裂韌度值分佈。並且在本研究試驗過程加入側向壓力,並研究側向壓力對各雙裂縫試體的影響。
本研究發現由完整石膏雙裂縫試驗得知,有側向壓力試體剪力強度明顯高於無側向壓力的試體,且其裂縫間距比必須介於0.1~0.25之間。當裂縫間距比大於0.4時,試體破壞路徑將不會沿著裂縫尖端垂直破壞,即不會形成剪切破壞,而是形成沿著裂縫尖端水平拉伸之拉力破壞。比較無側向壓力與有側向壓力下之雙裂縫試體發現,隨著側向壓力增加而裂縫尖端張應力會明顯減少,將有利於產生II型剪力破壞。在側向壓力下發現不飽和聚脂樹脂(POLY)為最適合裂縫補強之材料。
本研究進一步利用數值分析軟體ANSYS分析出各雙裂縫試體在側向壓力下之破裂韌度,最後利用破裂韌度迴歸曲線而得到破裂韌度迴歸公式。
利用本研究雙裂縫試驗參數代入前人(王凱正,2007)之單壓雙裂縫試體之II型應力強度因子(KII)迴歸公式,及最後本研究再以ANSYS分析模擬(Ko & Kemeny,2006)Flagstaff砂岩裂縫尖端破裂韌度,再與其利用FRANC2D/L分析結果相互驗證,發現側向壓力並不會影響裂縫幾何校正係數,且破裂韌度值誤差非常接近。
This study attempts to measure the Mode II (sliding mode) fracture toughness of intact gypsum and adhesive gypsum under the short beam compression testing. The gypsum is simulated as the rock-like material and three adhesives including Epoxy(3:1), Epoxy(1:1), Unsaturated Polyester Resin(POLY), are evaluated for their availabilities in surfacial crack repairing. The resulting values of Mode II fracture toughness are analyzed. The effect of confining stress is also investigated in this study.
The experimental setup is based on the configuration of the short beam compression with lateral confinement. This study examines the influence of the seperation of crack interval and the effect of confinement on the shear strength of the specimen. It is found that the testing condition is favorable for Mode II when the seperation ratio is between 0.1 and 0.25 for the unconfined test. When the seperation ratio exceeds above specified range, the fracture condition will result in an undesirable tensile failure. The increase in confining stress decreases tensile stress on the slot tip and hence obtains a favorable mode II condition. This study finds that the Unsaturated Polyester Resin(POLY) adhesive gypsum has the best response under confining condition.
This study also uses a finite element package ANSYS to evaluate the correlation equation of critical stress intensity factor (fracture toughness) for the short beam compression test. The regression formula for fracture toughness is derived. The regression formula derived from this study is also compared with the results obtained from Wang(2007) and Ko & Kemeny(2006). The comparison is found to be consistent.
1. 王桂堯、孫宗穎、黎振茲,’’岩石II型裂紋擴展的一般規
律’’,中南礦 冶學院學報,1994。
2. 王桂堯,’’剪切斷裂韌度(KIIC)確定之研究’’,岩石力學與
工程學報, 2002。
3. 王凱正,’’以單壓雙裂縫試驗量測石膏II型破裂韌度之研
究’’,國立成功大學資源工程研究所碩士論文,2007 。
4. 林鴻州,’’模擬岩石裂面形態及機制初探’’,國立臺灣大學
土木工程研究所碩士論文,2001 。
5. 郝彩哲,’’混凝土剪切斷裂的尺寸效應試驗研究’’,燕山大
學學報,2005。
6. 張培聖,’’混凝土裂縫修補材料之研究’’,私立朝陽科技大
學土木工 程研究所碩士論文,2002。
7. 黃國彰,’’人工岩石材料之節理面的剪力強度研究’’,國立
成功大學土木工程研究所碩士論文,2004。
8. 楊長義,’’模擬規則節理面岩體強度與變行性之研究’’,國
立臺灣大 學土木工程研究所博士論文,1992。
9. 董新龍、王禮立、虞吉林,’’兩種類型的剪切斷裂韌度及其裂
紋擴展’’,寧波大學學報,2000。
10. 鄭富書,’’軟弱岩盤承載行為研究(I)’’,行政院國家科學
委員會專題研究計畫成果報告,1994。
11. 應傳智,’’人工軟弱岩石之研究’’,國立臺灣大學土木工程
研究所博士論文,1995。
12. Al-Mandil, M.Y., Khalil, H. S., Baluch, M. H. and Azad,
A. K.,“Performance of Epoxy-Repaired Concrete under
Thermal Cycling,”Cement and Concrete Composites ,
Vol.12,No.1,pp.47-52,1990.
13. Abu-Tair, A.I., Rigden, S.R., and Burley, E.,“Testing
the Bond between Repair Materials and Concrete
Substrate,”ACI Materials Journal, Vol.93,No.6,
pp.553-558,1996.
14. Barton, N. R.,’’A Low Strength Material for
Simulation of the Mechanical Properties of Intact Rock
in Rock Mechanics Model ”,Proc. of the 2nd Cong.
of ISRM, Begrad, pp. 3-15, 1970.
15. Brown, E.T., ’’Rock characterization testing and
monitoring ’’, ISRM suggested methods,Pergamon
press, Oxford, 1981.
16. Blackman , B.R.K., Kinloch , A.J., Paraschi, M.,“ The
effects of disbonds on the pure mode II stress
intensity factor of aluminium plate reinforced with
bonded composite materials,” Engineering Fracture
Mechanics Vol.72 pp.877-897, 2005.
17. Chen, C., ’’On the determination of KII for the sigle
edge cracked plate in four-point bending’’, Proc.
2nd conf. Fract. mech, 1976.
18. Deere, D. E., ’’Geological Considerations’’, In
K.G. Stagg and O.C.Zienkiewicz(eds.), Rock Mechanics in
Engineering Practice, London, John Wiley & Sons, pp.1-
20, 1968.
19. Davies, T. G. Morgan, and A. W. Yim., ’’The Finite
Element Analysis of A Punch-Through Shear Specimen In
Mode II’’, Int. J.Fracture 28, pp.3-8,1985.
20. Einstein, H. H, and R. A. Nelson, R. W. Bruhn and R.
Hirsehfeld, ”Model Studies of Jointed-Rock
Behavior”, Proc. of 11th U.S. Symp. On Rock Mech.,
Berkeley, pp.83-103, 1969.
21. Edde, F.C. and Verreman, Y., “ Nominally constant
strain energy release rate specimen for the study of
Mode II fracture and fatigue in adhesively bonded
joints,” Int.J. Adhesion and Adhesives Vol.15, pp.29-
32,1995.
22. Griffith,A.A.,“The Phenomena of Rupture and Flow in
Solids,” Phil. Trans. Roy.Soe., A221, pp.163,1921.
23. Goodman, R. E,’’Introduction to Rock
Mechanics’’,John Wiley & Sons , pp.50-95,1980.
24. Hondros, G., “The evaluation of Poisson’s ratio and
the modulus of mate- rials of a low tensile resistance
by the Brazilian (Indirect tensile) test with
particular reference to concrete”, Aust. J. App. Sci.,
Vol.10, pp. 428-434, 1959.
25. Hoek, E. and Brown, E.T., “Underground Excavation in
Rock”, Chapter 6,The Institution of Mining and
Metallurgy, London, pp.131-182, 1980.
26. Hutchinson, J. W., and Suo, Z., “Mixed Mode Cracking
in Layered Materials,”Advances in Applied Mechanics,
Vol. 29, pp. 63-191, 1992.
27. Indraratna, B., ’’Development and Applications of a
Synthetic Material to Simulate Soft Sedimentary
Rocks”, Geotechnique 40, No.2, pp. 189-200,1990.
28. KO, T. Y. and KEMENY. J.,’’Determination of mode II
stress intensity factor using short beam compression
test, Department of Mining and Geological
Engineering’’, The University of Arizona, U.S.A,
2006.
29. Liu, K. and Barrt, B.I.G. & Wattkins, j. ,’’Mode II
fracture of fibrereinfor-ced concrete materials’’,
Int.J.Cement Composites and Lightweight Conc- rete, 7,
93-101, 1985.
30. Liu,S. Y., Mei, and Wu, T. Y., “Bimaterial Interfacial
Crack Growth as a Function of Mode-Mixity,” IEEE
Trans. Comp., Pkg., Manuf act. Technol., Vol.18,
pp. 618-626, 1995.
31. Mulville, D. R. and Mast, P. W., “ Strain Energy
Release Rate for Interfac-ial Cracks Between Dissimilar
Media. Engineering and Fracture Mechan-ics”, pp. 555-
565, 1976.
32. Moon, H. and Hucka, V. J.,’’Investigation of
Equivalent Materials for Physical Modelling of Utah
Coal Seams”, Proc. 26th Symp. On Rock Mech., Rapid
City, pp. 331-367, 1986.
33. Mutlu,O., A. Bobet,“Slip initiation on frictional
fractures, ” Engineering Fracture Mechanics Vol.72,
pp.729–747, 2005.
34. Mutlu,O., A. Bobet, “Slip propagation along frictional
discontinuities, ”International Journal of Rock
Mechanics & Mining Sciences Vol.43,pp.860–876, 2006.
35. Ouinas, D., B. Serier , B.B. Bouiadjra,“ The effects
of disbonds on the pure mode II stress intensity factor
of aluminium plate reinforced with bonded composite
materials,” Computational MaterialsScience Vol.39
pp.782–787, 2007.
36. Pareek, S.N., Ohama,Y. and Demura, K.,“Evaluation
Method for Adhesion Test Results of Bonded Mortars to
Concrete Substrates by Square Optimization Method, ”
ACI Materials Journal, Vol.92, No.4, pp.355-360,1995.
37. Pang, H. L. J. and C. W. Seetoh. “A Compact Mixed Mode
(CMM) Fracture Specimen for Adhesive Bounded Joints,”
Engineering Fracture Mechanics Vol. 57., No.1., pp57-
65, 1997.
38. Pang, H. L. J., X. Zhang, X. Shi, and Z. P. Wang,
“Interfacial Fracture To- ungness Test Methodology for
Adhesive Bounded Joints,” IEEE Transact- ions on
Electronics Packaging Technologies, Vol. 25, No.2, June
2002.
39. Rosenblad, J. L.,’’Development of a rocklike
material’’,Proc.10th Symp.on Rock Mech, pp.331-361,
1968.
40. Stimpson, B., ’’Modelling Material for Engineering
Rock Mechanics’’,Int. J. Rock Mech. Min. Sci. Vol.7,
pp.77-122, 1968.
41. Suo, Z. Mechanics of Interface Fracture : Ph. D.
Dissertation, Cambridge:Harvard Univ. 1989.
42. Small , J.,“Evaluating Structural Crack Repair, ”
Concrete International, pp.27-30,1995.
43. Tu, L.,and Kruger, D.,“Engineering Properties of Epoxy
Resins Used as Concrete Adhesives, ”ACI Materials
Journal, Vol.93, No.1, pp.26-35, 1996.
44. Watkins, J.,“ FRACTURE TOUGHNESS TEST FOR SOIL-CEMENT
SAMPLES IN MODE II,”Int. Journ. of Fracture Vol.23 ,
RI35-RI38, 1983.
45. Watkins, J. and Liu, K., B.I.G.,’’A finite eiement
study of the short beam test specimen test specimen
under mode II loading’’, Int.J.Cement Com- posites
and Lightwight Concrete,7 , pp.39-47, 1985.
46. Xu Roy, L., Sreeparna Sengupta, Huacheng Kuai ,“An
experimental and numerical investigation of adhesive
bonding strengths of polymer materials, ”International
Journal of Adhesion & Adhesives Vol.24, pp.455-460,
2004.