簡易檢索 / 詳目顯示

研究生: 許協誌
Hsu, Hsieh-Chih
論文名稱: 運用資料分析於混合通風換氣可行性與使用管理之研究
Data-Driven Processing of Natural and Mechanical Ventilation Air Change Rates Effectiveness and Use Management
指導教授: 潘振宇
Pan, Chen-Yu
學位類別: 博士
Doctor
系所名稱: 規劃與設計學院 - 建築學系
Department of Architecture
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 95
中文關鍵詞: 資料分析混合換氣使用管理二氧化碳濃度主成分分析分群分析
外文關鍵詞: Data-Driven, Natural and Mechanical Ventilation, Use Management, CO2 Concentration, Principal Component Analysis, Clustering Analysis
相關次數: 點閱:107下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 疫情影響人類活動由戶外更改為室內,而室內活動的增加對於室內空氣品質影響甚大,使換氣更顯得重要,換氣能提高室內空氣品質與降低空氣傳播感染疾病,自然換氣與機械換氣設備使用成為評估的主要議題。然而,評估自然換氣常使用二氧化碳示蹤氣體法,需耗費大量時間成本。而當前市售機械換氣設備控制僅有開與關、定時與調整風量大小 (強、中與弱),無法根據當下的環境資料與人數進行有效的控制。因此,本研究依演講廳與實驗室作為研究對象,先行評估自然與機械換氣機制,並訂定出一套適用於亞熱帶氣候的策略。
    快速評估自然換氣換氣次數,使用了巨集資料分析的常用方法 ─ 主成分分析、K-平均與線性迴歸分析講廳基本資料,探究變量與換氣效益的關係。分析結果顯示目標37間講廳分成2群,實測的11間講廳提供了64.65%的貢獻度。各別分析兩群時,開口面積與其換氣次數為線性關係,同時模型誤差介於6% ~ 12%,證明講廳基本資料推算出講廳自然換氣次數。
    機械換氣在本研究分為兩種控制方式,智慧型為一種結合了物聯網與物件偵測的空間解析方法控制換氣設備開關,實驗結果表明,室內二氧化碳濃度始終低於1000 ppm,也驗證了增加室內使用人數可以更精準判斷換氣設備的開啟時機,並減少了換氣設備70%的使用時間。簡易型為一個分群方法找出切換不同風量的二氧化碳界限值,並運用既有的全熱交換機控制器進行界限值的設定。實驗結果表明,所訂定的界限600與700ppm 確實能有效的控制全熱交換機運轉風量大小,並驗證了全熱交換機二氧化碳濃度界限訂定能降低11%的能源消耗。
    在不同季節使用策略,本研究建議夏季以機械換氣設備作為主要的換氣方式,二氧化碳濃度則是控制機械換氣的主要方法,如遇換氣不足可採用自然換氣之對角開口方式降低二氧化碳濃度。在冬季以自然換氣為主機械換氣為輔,於自然換氣不足時可使用機械換氣彌補,但目前實驗結果而言,自然換氣之對角開口是足夠當前使用,但受限於空間配置問題,對角開口在講廳空間較為常見,對一般公寓或民宅是較難有的配置方式,因此,機械換氣設備顯得更為重要,可用性廣且限制性相較自然換氣少,是目前社會風氣與本研究建議之方式。

    The COVID-19 pandemic has led to a shift in human activities from outdoor to indoor settings. The increase in indoor activities has a significant impact on indoor air quality, making ventilation more crucial. Ventilation can improve indoor air quality and reduce the transmission of airborne infectious diseases. Natural ventilation and mechanical ventilation systems have become the main focus of evaluation. However, the assessment of natural ventilation often relies on the use of CO2 tracer gas concentration decay method, which is time-consuming and costly. On the other hand, currently available mechanical ventilation systems only offer basic controls such as on/off, timed operation, and adjustable airflow rates (high, medium, low), lacking effective control based on real-time environmental data and occupancy. Therefore, this study focuses on auditoriums and laboratories as research subjects to evaluate natural ventilation and mechanical ventilation mechanisms and develop a strategy suitable for subtropical climates.
    A rapid assessment of natural ventilation air change per hour was conducted using commonly used big data analysis methods, including principal component analysis, K-means clustering, and linear regression analysis of basic lecture hall data, to explore the relationship between factor and ventilation effectiveness. The analysis results showed that the 37 lecture halls could be divided into two clustering, with the 11 tested lecture halls contributing 64.65% of the variance. When analyzing each clustering separately, the opening area showed a linear relationship with ventilation airflow rates, and the model error ranged from 6% to 12%, indicating that the basic lecture hall data could estimate the natural ventilation air change per hour.
    Mechanical ventilation in this study was divided into two control methods. The intelligent control method combined internet of things and object detection to control the operation of ventilation facilities. The experimental results showed that the indoor CO2 concentration remained below 1000 ppm, validating that increased occupancy could more accurately determine the timing of ventilation facilities activation, resulting in a 70% reduction in facilities usage time. The simplified control method employed clustering to determine the threshold values for switching different airflow rates based on CO2 concentration. Existing energy recovery ventilation controllers were used to set the threshold values. The experimental results demonstrated that the set thresholds of 600 ppm and 700 ppm effectively controlled the airflow rates of the energy recovery ventilation and reduced energy consumption by 11%.
    Regarding seasonal strategies, this study suggests that mechanical ventilation should be the primary ventilation method during the summer, with CO2 concentration as the main control parameter. If insufficient ventilation occurs, cross opening natural ventilation can be used to reduce CO2 concentration. During the winter, natural ventilation should be the main method with mechanical ventilation as a supplement. When natural ventilation is insufficient, mechanical ventilation can be used to compensate. However, based on the current experimental results, cross opening natural ventilation is sufficient for current usage. Due to space configuration limitations, cross openings are more common in auditorium spaces and may be less feasible in general apartments or houses. Therefore, mechanical ventilation systems are more important, as they offer broader applicability and fewer limitations compared to natural ventilation, aligning with the current societal trends and the recommendations of this study.

    摘要 i Abstract iii 表目錄 xxiv 圖目錄 xxv 名詞解釋 xxvi 1 緒論 1 1.1 背景 1 1.2 動機 7 1.3 目的 8 1.4 架構 10 2 文獻回顧 11 2.1 換氣提升室內空氣品質 11 2.2 換氣降低空氣飛沫傳播 16 2.3 不同換氣方法 17 2.4 機器學習於換氣使用 21 3 研究方法與理論 22 3.1 自然換氣次數快速評估架構 22 3.1.1 資料收集 23 3.1.2 主成分分析 24 3.1.3 分群分析 (K-平均) 25 3.1.4 二氧化碳示蹤氣體法 26 3.1.5 資料線性回歸 26 3.2 機械換氣控制-智慧控制 27 3.2.1 自行訓練模型 27 2.1.1 空間解析方法 29 3.3 機械換氣控制-簡易控制 32 3.3.1 簡易換氣控制架構 33 3.3.2 分群分析 (模糊 C-平均) 33 4 實驗結果 35 4.1 自然換氣次數評估 35 4.1.1 講廳基本資料 36 4.1.2 分析結果 38 4.2 機械換氣控制 45 4.2.1 智慧控制 46 4.2.2 簡易控制 49 5 討論 54 5.1 自然換氣線性回歸模型 54 5.2 機械換氣不同空間大小差異 55 5.3 過往研究與本研究之差異 56 5.4 自然與機械換氣使用策略 58 5.4.1 自然換氣不同開口的換氣次數 58 5.4.2 增加適當機械換氣設備 59 5.4.3 換氣季節使用策略 60 6 結論與未來課題 63 6.1 結論 63 6.2 未來課題 64 參考文獻 66 附錄1 79 附錄2 80 附錄3 81 附錄4 82 附錄5 90 附錄6 95

    Abdullah, H. K., & Alibaba, H. Z. (2022). Open-plan office design for improved natural ventilation and reduced mixed mode supplementary loads. Indoor and Built Environment, 31(8), 2145-2167.
    Al-Awadi, L. (2018). Assessment of indoor levels of volatile organic compounds and carbon dioxide in schools in Kuwait. Journal of the Air & Waste Management Association, 68(1), 54-72.
    Agarwal, N., Meena, C. S., Raj, B. P., Saini, L., Kumar, A., Gopalakrishnan, N., . . . Aggarwal, V. (2021). Indoor air quality improvement in COVID-19 pandemic: Review. Sustainable Cities and Society, 70, 102942.
    Ahmad, T., Chen, H., Huang, R., Yabin, G., Wang, J., Shair, J., . . . Kazim, M. (2018). Supervised based machine learning models for short, medium and long-term energy prediction in distinct building environment. Energy, 158, 17-32.
    Al-Zubaydi, A. Y. T., & Hong, G. (2018). Experimental investigation of counter flow heat exchangers for energy recovery ventilation in cooling mode. International Journal of Refrigeration, 93, 132-143.
    Allen, J. G., & Ibrahim, A. M. (2021). Indoor Air Changes and Potential Implications for SARS-CoV-2 Transmission. JAMA, 325(20), 2112-2113.
    Ardabili, S., Beszedes, B., Nadai, L., Szell, K., Mosavi, A., & Imre, F. (2020, 14-15 Oct. 2020). Comparative Analysis of Single and Hybrid Neuro-Fuzzy-Based Models for an Industrial Heating Ventilation and Air Conditioning Control System. Paper presented at the 2020 RIVF International Conference on Computing and Communication Technologies (RIVF).
    ASHRAE. (2019). ANSI/ASHRAE Standard 62.1-2019 Ventilation for Acceptable Indoor Air Quality. In: American Society of Heating, Refrigerating and Air-Conditioning Engineers.
    Bamdad, K., Matour, S., Izadyar, N., & Omrani, S. (2022). Impact of climate change on energy saving potentials of natural ventilation and ceiling fans in mixed-mode buildings. Building and Environment, 209, 108662.
    Benammar, M., Abdaoui, A., Ahmad, S. H. M., Touati, F., & Kadri, A. (2018). A Modular IoT Platform for Real-Time Indoor Air Quality Monitoring. Sensors, 18(2).
    Bhaganagar, K., & Bhimireddy, S. (2020). Local atmospheric factors that enhance air-borne dispersion of coronavirus - High-fidelity numerical simulation of COVID19 case study in real-time. Environmental Research, 191, 110170.
    Bienvenido-Huertas, D., Marín-García, D., Carretero-Ayuso, M. J., & Rodríguez-Jiménez, C. E. (2021). Climate classification for new and restored buildings in Andalusia: Analysing the current regulation and a new approach based on K-means. Journal of Building Engineering, 43, 102829.
    Bienvenido-Huertas, D., Sánchez-García, D., & Rubio-Bellido, C. (2020). Analysing natural ventilation to reduce the cooling energy consumption and the fuel poverty of social dwellings in coastal zones. Applied Energy, 279, 115845.
    Bora, D., & Basistha, D. (2021). The outbreak of COVID-19 pandemic and its impact on stock market volatility: Evidence from a worst-affected economy. Journal of Public Affairs, 21(4), e2623.
    Borlea, I.-D., Precup, R.-E., Borlea, A.-B., & Iercan, D. (2021). A Unified Form of Fuzzy C-Means and K-Means algorithms and its Partitional Implementation. Knowledge-Based Systems, 214, 106731.
    Buzzy, M., Thesma, V., Davoodi, M., & Mohammadpour Velni, J. (2020). Real-Time Plant Leaf Counting Using Deep Object Detection Networks. Sensors, 20(23).
    Cao, Z., Liao, T., Song, W., Chen, Z., & Li, C. (2021). Detecting the shuttlecock for a badminton robot: A YOLO based approach. Expert Systems with Applications, 164, 113833.
    Chang, H., Capuozzo, B., Okumus, B., & Cho, M. (2021). Why cleaning the invisible in restaurants is important during COVID-19: A case study of indoor air quality of an open-kitchen restaurant. International Journal of Hospitality Management, 94, 102854.
    Chen, W., Qian, H., Zhang, N., Liu, F., Liu, L., & Li, Y. (2022). Extended short-range airborne transmission of respiratory infections. Journal of Hazardous Materials, 422, 126837.
    Chen, Y., Norford, L. K., Samuelson, H. W., & Malkawi, A. (2018). Optimal control of HVAC and window systems for natural ventilation through reinforcement learning. Energy and Buildings, 169, 195-205.
    Cui, S., Cohen, M., Stabat, P., & Marchio, D. (2015). CO2 tracer gas concentration decay method for measuring air change rate. Building and Environment, 84, 162-169.
    Cun, Y. L., Jackel, L. D., Boser, B., Denker, J. S., Graf, H. P., Guyon, I., . . . Hubbard, W. (1989). Handwritten digit recognition: applications of neural network chips and automatic learning. IEEE Communications Magazine, 27(11), 41-46.
    Czerniawski, T., Sankaran, B., Nahangi, M., Haas, C., & Leite, F. (2018). 6D DBSCAN-based segmentation of building point clouds for planar object classification. Automation in Construction, 88, 44-58.
    Daisey, J. M., Angell, W. J., & Apte, M. G. (2003). Indoor air quality, ventilation and health symptoms in schools: an analysis of existing information. Indoor air, 13(LBNL-48287).
    Dawe, K. E. R., Furlani, T. C., Kowal, S. F., Kahan, T. F., VandenBoer, T. C., & Young, C. J. (2019). Formation and emission of hydrogen chloride in indoor air. Indoor Air, 29(1), 70-78.
    Di Gilio, A., Palmisani, J., Pulimeno, M., Cerino, F., Cacace, M., Miani, A., & de Gennaro, G. (2021). CO2 concentration monitoring inside educational buildings as a strategic tool to reduce the risk of Sars-CoV-2 airborne transmission. Environmental Research, 202, 111560.
    Ding, E., Zhang, D., & Bluyssen, P. M. (2022). Ventilation regimes of school classrooms against airborne transmission of infectious respiratory droplets: A review. Building and Environment, 207, 108484.
    Dong, X., Liu, L., Zhu, L., Cheng, Z., & Zhang, H. (2021). Unsupervised Deep K-Means Hashing for Efficient Image Retrieval and Clustering. IEEE Transactions on Circuits and Systems for Video Technology, 31(8), 3266-3277.
    Duan, Z., Sun, Y., Wang, M., Hu, R., & Dong, X. (2022). Evaluation of Mixed-Mode Ventilation Thermal Performance and Energy Saving Potential from Retrofitting a Beijing Office Building. Buildings, 12(6), 793.
    Duporge, I., Isupova, O., Reece, S., Macdonald, D. W., & Wang, T. (2021). Using very-high-resolution satellite imagery and deep learning to detect and count African elephants in heterogeneous landscapes. Remote Sensing in Ecology and Conservation, 7(3), 369-381.
    Eradze, M., Bardone, E., & Dipace, A. (2021). Theorising on covid-19 educational emergency: magnifying glasses for the field of educational technology. Learning, Media and Technology, 46(4), 404-419.
    Ezzeldin, S., & Rees, S. J. (2013). The potential for office buildings with mixed-mode ventilation and low energy cooling systems in arid climates. Energy and Buildings, 65, 368-381.
    Fan, X., Liao, C., Matsuo, K., Verniers, K., Laverge, J., Neyrinck, B., . . . Wargocki, P. (2023). A single-blind field intervention study of whether increased bedroom ventilation improves sleep quality. Science of The Total Environment, 884, 163805.
    Fang, F., Li, L., Gu, Y., Zhu, H., & Lim, J.-H. (2020). A novel hybrid approach for crack detection. Pattern Recognition, 107, 107474.
    Feng, Q., Gao, C., Wang, L., Zhao, Y., Song, T., & Li, Q. (2020). Spatio-temporal fall event detection in complex scenes using attention guided LSTM. Pattern Recognition Letters, 130, 242-249.
    Ferdyn-Grygierek, J., Baranowski, A., Blaszczok, M., & Kaczmarczyk, J. (2019). Thermal diagnostics of natural ventilation in buildings: An integrated approach. Energies, 12(23), 4556.
    Fernández-Agüera, J., Campano, M. Á., Domínguez-Amarillo, S., Acosta, I., & Sendra, J. J. (2019). CO2 Concentration and occupants’ symptoms in naturally ventilated schools in Mediterranean climate. Buildings, 9(9), 197.
    Fiorentini, M., Serale, G., Kokogiannakis, G., Capozzoli, A., & Cooper, P. (2019). Development and evaluation of a comfort-oriented control strategy for thermal management of mixed-mode ventilated buildings. Energy and Buildings, 202, 109347.
    Fracastoro, G. V., Mutani, G., & Perino, M. (2002). Experimental and theoretical analysis of natural ventilation by windows opening. Energy and Buildings, 34(8), 817-827.
    Frattolillo, A., Stabile, L., & Dell’Isola, M. (2021). Natural ventilation measurements in a multi-room dwelling: Critical aspects and comparability of pressurization and tracer gas decay tests. Journal of Building Engineering, 42, 102478.
    Fromme, H., Diemer, J., Dietrich, S., Cyrys, J., Heinrich, J., Lang, W., ... & Twardella, D. (2008). Chemical and morphological properties of particulate matter (PM10, PM2. 5) in school classrooms and outdoor air. Atmospheric Environment, 42(27), 6597-6605.
    Gall, E. T., Cheung, T., Luhung, I., Schiavon, S., & Nazaroff, W. W. (2016). Real-time monitoring of personal exposures to carbon dioxide. Building and Environment, 104, 59-67.
    Guillén-Lambea, S., Rodríguez-Soria, B., & Marín, J. M. (2017). Control strategies for Energy Recovery Ventilators in the South of Europe for residential nZEB—Quantitative analysis of the air conditioning demand. Energy and Buildings, 146, 271-282.
    Guo, Y., Liu, Y., Oerlemans, A., Lao, S., Wu, S., & Lew, M. S. (2016). Deep learning for visual understanding: A review. Neurocomputing, 187, 27-48.
    Hartigan, J. A., & Wong, M. A. (1979). Algorithm AS 136: A K-Means Clustering Algorithm. Journal of the Royal Statistical Society. Series C (Applied Statistics), 28(1), 100-108.
    Hattori, S., Iwamatsu, T., Miura, T., Tsutsumi, F., & Tanaka, N. (2022). Investigation of Indoor Air Quality in Residential Buildings by Measuring CO2 Concentration and a Questionnaire Survey. Sensors, 22(19), 7331.
    He, K., Gkioxari, G., Dollár, P., & Girshick, R. (2017). Mask r-cnn. Paper presented at the Proceedings of the IEEE international conference on computer vision.
    He, K., Zhang, X., Ren, S., & Sun, J. (2015). Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(9), 1904-1916.
    He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. Paper presented at the Proceedings of the IEEE conference on computer vision and pattern recognition.
    Heo, S., Nam, K., Loy-Benitez, J., Li, Q., Lee, S., & Yoo, C. (2019). A deep reinforcement learning-based autonomous ventilation control system for smart indoor air quality management in a subway station. Energy and Buildings, 202, 109440.
    Heracleous, C., & Michael, A. (2019). Experimental assessment of the impact of natural ventilation on indoor air quality and thermal comfort conditions of educational buildings in the Eastern Mediterranean region during the heating period. Journal of Building Engineering, 26, 100917.
    Hsu, C.-C., & Zhuang, Z.-Y. (2019). Competition Among the World’s Main Technological Powers to Develop IPs: Cross-National Longitudinal Patentography Over a 9-Year Time Span. Applied Sciences, 9(12).
    Hsu, H. C., Pan, C. Y., Wu, I. C., Liu, C. C., & Zhuang, Z. Y. (2023). Using the big data analysis and basic information from lecture Halls to predict air change rate. Journal of Building Engineering, 66, 105817.
    Hsu, H. C., Wu, I. C., & Pan, C. Y. (2022). Controlling the initiating time of ventilation facilities by spatial analytic method. Journal of Building Engineering, 54, 104488.
    Hwang, C., & Rhee, F. C. (2007). Uncertain Fuzzy Clustering: Interval Type-2 Fuzzy Approach to C-Means. IEEE Transactions on Fuzzy Systems, 15(1), 107-120.
    Izadyar, N., Miller, W., Rismanchi, B., & Garcia-Hansen, V. (2020). A numerical investigation of balcony geometry impact on single-sided natural ventilation and thermal comfort. Building and environment, 177, 106847.
    Jing, G., Cai, W., Zhai, D., Liu, S., & Cui, C. (2018). A model-based air balancing method of a ventilation system. Energy and Buildings, 174, 506-512.
    Jing, G., Cai, W., Zhang, X., Cui, C., Yin, X., & Xian, H. (2019). An energy-saving oriented air balancing strategy for multi-zone demand-controlled ventilation system. Energy, 172, 1053-1065.
    Jo, J., Jo, B., Kim, J., Kim, S., & Han, W. (2020). Development of an IoT-Based Indoor Air Quality Monitoring Platform. Journal of Sensors, 2020, 8749764.
    Kabirikopaei, A., & Lau, J. (2020). Uncertainty analysis of various CO2-Based tracer-gas methods for estimating seasonal ventilation rates in classrooms with different mechanical systems. Building and environment, 179, 107003.
    Kalimeri, K. K., Saraga, D. E., Lazaridis, V. D., Legkas, N. A., Missia, D. A., Tolis, E. I., & Bartzis, J. G. (2016). Indoor air quality investigation of the school environment and estimated health risks: Two-season measurements in primary schools in Kozani, Greece. Atmospheric Pollution Research, 7(6), 1128-1142.
    Kallio, J., Tervonen, J., Räsänen, P., Mäkynen, R., Koivusaari, J., & Peltola, J. (2021). Forecasting office indoor CO2 concentration using machine learning with a one-year dataset. Building and Environment, 187, 107409.
    Khalil, S., Ghali, K., Ghaddar, N., & Itani, M. (2020). Hybrid mixed ventilation system aided with personalised ventilation to attain comfort and save energy. International Journal of Sustainable Energy, 39(10), 964-981.
    Khoshbakht, M., Gou, Z., & Zhang, F. (2019). A pilot study of thermal comfort in subtropical mixed-mode higher education office buildings with different change-over control strategies. Energy and Buildings, 196, 194-205.
    Kim, J. L., Elfman, L., Mi, Y., Wieslander, G., Smedje, G., & Norbäck, D. (2007). Indoor molds, bacteria, microbial volatile organic compounds and plasticizers in schools: associations with asthma and respiratory symptoms in pupils. Indoor air, 17(2), 153-163.
    Krizhevsky, A., Sutskever, I., & Hinton, G. E. J. A. i. n. i. p. s. (2012). Imagenet classification with deep convolutional neural networks. 25, 1097-1105.
    Kuga, K., Ito, K., Chen, W., Wang, P., Fowles, J., & Kumagai, K. (2021). Secondary indoor air pollution and passive smoking associated with cannabis smoking using electric cigarette device–demonstrative in silico study. PLOS Computational Biology, 17(5), e1009004.
    Kusiak, A., & Li, M. (2009). Optimal decision making in ventilation control. Energy, 34(11), 1835-1845.
    Layeni, A., Collins Nwaokocha, O. O., Giwa, S., Tongo, S., Onabanjo, O., Samuel, T., . . . Technologies. (2020). Zero-Energy Buildings: New Approaches and Technologies.
    Lekshminarayanan, G., Croal, M., & Maisonneuve, J. (2020). Recovering latent and sensible energy from building exhaust with membrane-based energy recovery ventilation. Science and Technology for the Built Environment, 26(7), 1000-1012.
    Leivo, V., Prasauskas, T., Du, L., Turunen, M., Kiviste, M., Aaltonen, A., . . . Haverinen-Shaughnessy, U. (2018). Indoor thermal environment, air exchange rates, and carbon dioxide concentrations before and after energy retro fits in Finnish and Lithuanian multi-family buildings. Science of The Total Environment, 621, 398-406.
    Li, C., & Qiao, Z. (2021). Construction of a Visual Saliency Model for Neighborhood Building Landmarks Based on K-Means Clustering. Advances in Civil Engineering, 2021, 9033021.
    Li, D., Wang, Z., Wu, S., Miao, Z., Du, L., & Duan, Y. (2020). Automatic recognition methods of fish feeding behavior in aquaculture: A review. Aquaculture, 528, 735508.
    Li, X., Li, B., Liu, F., Yin, H., & Zhou, F. (2020). Segmentation of Pulmonary Nodules Using a GMM Fuzzy C-Means Algorithm. IEEE Access, 8, 37541-37556.
    Li, Y., Cheng, P., & Jia, W. (2022). Poor ventilation worsens short‐range airborne transmission of respiratory infection. Indoor Air, 32(1), e12946.
    Liakos, K. G., Busato, P., Moshou, D., Pearson, S., & Bochtis, D. (2018). Machine Learning in Agriculture: A Review. Sensors, 18(8).
    Lim, A.-Y., Yoon, M., Kim, E.-H., Kim, H.-A., Lee, M. J., & Cheong, H.-K. (2021). Effects of mechanical ventilation on indoor air quality and occupant health status in energy-efficient homes: A longitudinal field study. Science of The Total Environment, 785, 147324.
    Lin, K. (2014). A Novel Evolutionary Kernel Intuitionistic Fuzzy C-means Clustering Algorithm. IEEE Transactions on Fuzzy Systems, 22(5), 1074-1087.
    Liu, J., Yang, X., Jiang, Q., Qiu, J., & Liu, Y. (2019). Occupants’ thermal comfort and perceived air quality in natural ventilated classrooms during cold days. Building and Environment, 158, 73-82.
    Liu, Q., Ma, Y., Alhussein, M., Zhang, Y., & Peng, L. (2016). Green data center with IoT sensing and cloud-assisted smart temperature control system. Computer Networks, 101, 104-112.
    Lu, W. Z., He, H. D., & Dong, L. Y. (2011). Performance assessment of air quality monitoring networks using principal component analysis and cluster analysis. Building and Environment, 46(3), 577-583.
    Lv, Z., Liu, T., Shi, C., Benediktsson, J. A., & Du, H. (2019). Novel Land Cover Change Detection Method Based on k-Means Clustering and Adaptive Majority Voting Using Bitemporal Remote Sensing Images. IEEE Access, 7, 34425-34437.
    Madureira, J., Paciência, I., Ramos, E., Barros, H., Pereira, C., Teixeira, J. P., & Fernandes, E. D. O. (2015). Children’s health and indoor air quality in primary schools and homes in Portugal—Study design. Journal of Toxicology and Environmental Health, Part A, 78(13-14), 915-930.
    Malayeri, M., Lee, C. S., Niu, J., Zhu, J., & Haghighat, F. (2021). Kinetic and reaction mechanism of generated by-products in a photocatalytic oxidation reactor: Model development and validation. Journal of Hazardous Materials, 419, 126411.
    Mandal, V., & Adu-Gyamfi, Y. (2020). Object Detection and Tracking Algorithms for Vehicle Counting: A Comparative Analysis. Journal of Big Data Analytics in Transportation, 2(3), 251-261.
    Marinakis, V., & Doukas, H. (2018). An Advanced IoT-based System for Intelligent Energy Management in Buildings. Sensors, 18(2). doi:10.3390/s18020610
    Mataloto, B., Ferreira, J. C., & Cruz, N. (2019). LoBEMS—IoT for Building and Energy Management Systems. Electronics, 8(7).
    Melikov, A. K., Ai, Z. T., & Markov, D. G. (2020). Intermittent occupancy combined with ventilation: An efficient strategy for the reduction of airborne transmission indoors. Science of the Total Environment, 744, 140908.
    Mi, Y. H., Norbäck, D., Tao, J., Mi, Y. L., & Ferm, M. (2006). Current asthma and respiratory symptoms among pupils in Shanghai, China: influence of building ventilation, nitrogen dioxide, ozone, and formaldehyde in classrooms. Indoor air, 16(6), 454-464.
    Mingoti, S. A., & Lima, J. O. (2006). Comparing SOM neural network with Fuzzy c-means, K-means and traditional hierarchical clustering algorithms. European Journal of Operational Research, 174(3), 1742-1759.
    Monge-Barrio, A., Bes-Rastrollo, M., Dorregaray-Oyaregui, S., González-Martínez, P., Martin-Calvo, N., López-Hernández, D., . . . Sánchez-Ostiz, A. (2022). Encouraging natural ventilation to improve indoor environmental conditions at schools. Case studies in the north of Spain before and during COVID. Energy and Buildings, 254, 111567.
    Muelas, Á., Remacha, P., Pina, A., Tizné, E., El-Kadmiri, S., Ruiz, A., . . . Ballester, J. (2022). Analysis of different ventilation strategies and CO2 distribution in a naturally ventilated classroom. Atmospheric Environment, 283, 119176.
    Nair, A. N., Anand, P., George, A., & Mondal, N. (2022). A review of strategies and their effectiveness in reducing indoor airborne transmission and improving indoor air quality. Environmental Research, 213, 113579.
    Okuyama, H., & Onishi, Y. (2012). Uncertainty analysis and optimum concentration decay term for air exchange rate measurements: Estimation methods for effective volume and infiltration rate. Building and Environment, 49, 182-192.
    Pan, C. Y., Hsu, H. C., & Huang, K. W. (2023). Real-time Control of the Air Volume in Ventilation Facilities by Limiting CO2 Concentration with Cluster Algorithms. IEEE Transactions on Industrial Electronics. (Accept)
    Pan, Y., Zhang, G., & Zhang, L. (2020). A spatial-channel hierarchical deep learning network for pixel-level automated crack detection. Automation in Construction, 119, 103357.
    Park, J., Jeong, B., Chae, Y.-T., & Jeong, J.-W. (2020). Machine learning algorithms for predicting occupants' behaviour in the manual control of windows for cross-ventilation in homes. Indoor and Built Environment, 30(8), 1106-1123.
    Park, S., Choi, Y., Song, D., & Kim, E. K. (2021). Natural ventilation strategy and related issues to prevent coronavirus disease 2019 (COVID-19) airborne transmission in a school building. Science of The Total Environment, 789, 147764.
    Parker, J. K., & Hall, L. O. (2014). Accelerating Fuzzy-C Means Using an Estimated Subsample Size. IEEE Transactions on Fuzzy Systems, 22(5), 1229-1244.
    Parvathi, S., & Tamil Selvi, S. (2021). Detection of maturity stages of coconuts in complex background using Faster R-CNN model. Biosystems Engineering, 202, 119-132.
    Pearson, K. (1901). Principal components analysis. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 6(2), 559.
    Peng, Y., Rysanek, A., Nagy, Z., & Schlüter, A. (2018). Using machine learning techniques for occupancy-prediction-based cooling control in office buildings. Applied Energy, 211, 1343-1358.
    Pfeffermann, D., & Nathan, G. (1981). Regression Analysis of Data from a Cluster Sample. Journal of the American Statistical Association, 76(375), 681-689.
    Praene, J. P., Malet-Damour, B., Radanielina, M. H., Fontaine, L., & Riviere, G. (2019). GIS-based approach to identify climatic zoning: A hierarchical clustering on principal component analysis. Building and Environment, 164, 106330.
    Rajkomar, A., Dean, J., & Kohane, I. (2019). Machine Learning in Medicine. New England Journal of Medicine, 380(14), 1347-1358.
    Rasouli, M., Simonson, C. J., & Besant, R. W. (2010). Applicability and optimum control strategy of energy recovery ventilators in different climatic conditions. Energy and Buildings, 42(9), 1376-1385.
    Raysoni, A. U., Sarnat, J. A., Sarnat, S. E., Garcia, J. H., Holguin, F., Luèvano, S. F., & Li, W. W. (2011). Binational school-based monitoring of traffic-related air pollutants in El Paso, Texas (USA) and Ciudad Juárez, Chihuahua (México). Environmental pollution, 159(10), 2476-2486.
    Redlich, C. A., Sparer, J., & Cullen, M. R. (1997). Sick-building syndrome. The Lancet, 349(9057), 1013-1016.
    Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-time object detection. Paper presented at the Proceedings of the IEEE conference on computer vision and pattern recognition.
    Remion, G., Moujalled, B., & El Mankibi, M. (2021). Dynamic measurement of the airflow rate in a two-zones dwelling, from the CO2 tracer gas-decay method using the Kalman filter. Building and environment, 188, 107493.
    Ren, J., & Liu, J. (2019). Fine particulate matter control performance of a new kind of suspended fan filter unit for use in office buildings. Building and Environment, 149, 468-476.
    Ren, S., He, K., Girshick, R., & Sun, J. (2017). Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(6), 1137-1149.
    Ren, X., Zhang, C., Zhao, Y., Boxem, G., Zeiler, W., & Li, T. (2019). A data mining-based method for revealing occupant behavior patterns in using mechanical ventilation systems of Dutch dwellings. Energy and Buildings, 193, 99-110.
    Rezaeian, M., Montazeri, H., & Loonen, R. C. G. M. (2017). Science foresight using life-cycle analysis, text mining and clustering: A case study on natural ventilation. Technological Forecasting and Social Change, 118, 270-280.
    Rousseeuw, P. J. (1987). Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics, 20, 53-65.
    Sacht, H., & Lukiantchuki, M. A. (2017). Windows Size and the Performance of Natural Ventilation. Procedia Engineering, 196, 972-979.
    Sadrizadeh, S., Yao, R., Yuan, F., Awbi, H., Bahnfleth, W., Bi, Y., ... & Li, B. (2022). Indoor air quality and health in schools: A critical review for developing the roadmap for the future school environment. Journal of Building Engineering, 104908.
    Salcido, J. C., Raheem, A. A., & Issa, R. R. (2016). From simulation to monitoring: Evaluating the potential of mixed-mode ventilation (MMV) systems for integrating natural ventilation in office buildings through a comprehensive literature review. Energy and Buildings, 127, 1008-1018.
    Scott, N., Palmer, A., Delport, D., Abeysuriya, R., Stuart, R. M., Kerr, C. C., . . . Hellard, M. E. (2021). Modelling the impact of relaxing COVID-19 control measures during a period of low viral transmission. Medical Journal of Australia, 214(2), 79-83.
    Seetan, K., Al-Zubi, M., Rubbai, Y., Athamneh, M., Khamees, A. a., & Radaideh, T. (2021). Impact of COVID-19 on medical students’ mental wellbeing in Jordan. PLOS ONE, 16(6), e0253295.
    Shin, M.-S., Rhee, K.-N., Lee, E.-T., & Jung, G.-J. (2018). Performance evaluation of CO2-based ventilation control to reduce CO2 concentration and condensation risk in residential buildings. Building and Environment, 142, 451-463.
    Shriram, S., Ramamurthy, K., & Ramakrishnan, S. (2019). Effect of occupant-induced indoor CO2 concentration and bioeffluents on human physiology using a spirometric test. Building and Environment, 149, 58-67.
    Simanic, B., Nordquist, B., Bagge, H., & Johansson, D. (2019). Indoor air temperatures, CO2 concentrations and ventilation rates: Long-term measurements in newly built low-energy schools in Sweden. Journal of Building Engineering, 25, 100827.
    Simoni, M., Annesi-Maesano, I., Sigsgaard, T., Norback, D., Wieslander, G., Nystad, W., ... & Viegi, G. (2010). School air quality related to dry cough, rhinitis and nasal patency in children. European Respiratory Journal, 35(4), 742-749.
    Simonyan, K., & Zisserman, A. J. a. p. a. (2014). Very deep convolutional networks for large-scale image recognition.
    Smedje, G., Norbäck, D., & Edling, C. (1997). Asthma among secondary schoolchildren in relation to the school environment. Clinical & Experimental Allergy, 27(11), 1270-1278.
    Sofuoglu, S. C., Aslan, G., Inal, F., & Sofuoglu, A. (2011). An assessment of indoor air concentrations and health risks of volatile organic compounds in three primary schools. International journal of hygiene and environmental health, 214(1), 36-46.
    Stabile, L., Massimo, A., Canale, L., Russi, A., Andrade, A., & Dell’Isola, M. (2019). The effect of ventilation strategies on indoor air quality and energy consumptions in classrooms. Buildings, 9(5), 110.
    Stasi, R., Ruggiero, F., & Berardi, U. (2022). The efficiency of hybrid ventilation on cooling energy savings in NZEBs. Journal of Building Engineering, 53, 104401.
    Sun, J. L., Jing, X., Chang, W. J., Chen, Z. X., & Zeng, H. (2015). Cumulative health risk assessment of halogenated and parent polycyclic aromatic hydrocarbons associated with particulate matters in urban air. Ecotoxicology and Environmental Safety, 113, 31-37.
    Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., . . . Rabinovich, A. (2015). Going deeper with convolutions. Paper presented at the Proceedings of the IEEE conference on computer vision and pattern recognition.
    T, V. (2014). Performance based analysis between k-Means and Fuzzy C-Means clustering algorithms for connection oriented telecommunication data. Applied Soft Computing, 19, 134-146.
    Tagliabue, L. C., Re Cecconi, F., Rinaldi, S., & Ciribini, A. L. C. (2021). Data driven indoor air quality prediction in educational facilities based on IoT network. Energy and Buildings, 236, 110782.
    Turunen, M., Toyinbo, O., Putus, T., Nevalainen, A., Shaughnessy, R., & Haverinen-Shaughnessy, U. (2014). Indoor environmental quality in school buildings, and the health and wellbeing of students. International journal of hygiene and environmental health, 217(7), 733-739.
    Valenzuela, P. E., Ebadat, A., Everitt, N., & Parisio, A. (2020). Closed-Loop Identification for Model Predictive Control of HVAC Systems: From Input Design to Controller Synthesis. IEEE Transactions on Control Systems Technology, 28(5), 1681-1695.
    Vassella, C. C., Koch, J., Henzi, A., Jordan, A., Waeber, R., Iannaccone, R., & Charrière, R. (2021). From spontaneous to strategic natural window ventilation: Improving indoor air quality in Swiss schools. International Journal of Hygiene and Environmental Health, 234, 113746.
    Viegas, C., Veríssimo, C., Rosado, L., & Santos, C. S. (2010). Air fungal contamination in two elementary schools in Lisbon, Portugal. WIT Transactions on Ecology and the Environment, 136, 305-312.
    Voulodimos, A., Doulamis, N., Doulamis, A., & Protopapadakis, E. (2018). Deep Learning for Computer Vision: A Brief Review. Computational Intelligence and Neuroscience, 2018, 7068349.
    Vouriot, C. V., Burridge, H. C., Noakes, C. J., & Linden, P. F. (2021). Seasonal variation in airborne infection risk in schools due to changes in ventilation inferred from monitored carbon dioxide. Indoor air, 31(4), 1154-1163.
    Wang, J., Huang, J., Feng, Z., Cao, S.-J., & Haghighat, F. (2021). Occupant-density-detection based energy efficient ventilation system: Prevention of infection transmission. Energy and Buildings, 240, 110883.
    Wang, S., Zhang, Y., Waring, M., & Lo, L. J. (2018). Statistical analysis of wind data using Weibull distribution for natural ventilation estimation. Science and Technology for the Built Environment, 24(9), 922-932.
    Wang, Z., Chen, Y., Zhou, M., Wu, J., & Zhang, M. (2021). A clustering method with target supervision for the thermal climate division of residential buildings in the Hot Summer and Cold Winter Area of China. Journal of Building Engineering, 43, 103156.
    Wang, Z., & Wang, L. (2013). Intelligent Control of Ventilation System for Energy-Efficient Buildings With CO2 Predictive Model. IEEE Transactions on Smart Grid, 4(2), 686-693.
    Weerasuriya, A. U., Zhang, X., Gan, V. J. L., & Tan, Y. (2019). A holistic framework to utilize natural ventilation to optimize energy performance of residential high-rise buildings. Building and environment, 153, 218-232.
    Wu, C., & Guo, X. (2021). A Novel Single Fuzzifier Interval Type-2 Fuzzy C-Means Clustering With Local Information for Land-Cover Segmentation. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 5903-5917.
    Xu, Y., Yu, G., Wang, Y., Wu, X., & Ma, Y. (2017). Car Detection from Low-Altitude UAV Imagery with the Faster R-CNN. Journal of Advanced Transportation, 2017, 2823617.
    Yang, F., Liu, Z., Bai, X., & Zhang, Y. (2022). An Improved Intuitionistic Fuzzy C-Means for Ship Segmentation in Infrared Images. IEEE Transactions on Fuzzy Systems, 30(2), 332-344.
    Yang, M.-D., Huang, K.-S., Kuo, Y.-H., Tsai, H. P., & Lin, L.-M. (2017). Spatial and Spectral Hybrid Image Classification for Rice Lodging Assessment through UAV Imagery. Remote Sensing, 9(6).
    Yang, Y., Hu, G., & Spanos, C. J. (2022). Stochastic Optimal Control of HVAC System for Energy-Efficient Buildings. IEEE Transactions on Control Systems Technology, 30(1), 376-383.
    Yang, Y., Srinivasan, S., Hu, G., & Spanos, C. J. (2021). Distributed Control of Multizone HVAC Systems Considering Indoor Air Quality. IEEE Transactions on Control Systems Technology, 29(6), 2586-2597.
    Yi, Y. K., Anis, M., Jang, K., & Kim, Y. J. (2023). Application of machine learning (ML) and genetic algorithm (GA) to optimize window wing wall design for natural ventilation. Journal of Building Engineering, 68, 106218.
    Zeiler, M. D., & Fergus, R. (2014, 2014//). Visualizing and Understanding Convolutional Networks. Paper presented at the Computer Vision – ECCV 2014, Cham.
    Zeman, W. D. B. K. L. (1998). Deposition of fine particles in children spontaneously breathing at rest. Inhalation Toxicology, 10(9), 831-842.
    Zhang, L., Wen, J., Li, Y., Chen, J., Ye, Y., Fu, Y., & Livingood, W. (2021). A review of machine learning in building load prediction. Applied Energy, 285, 116452.
    Zhang, T., Liu, L., Zhao, K., Wiliem, A., Hemson, G., & Lovell, B. (2020). Omni-supervised joint detection and pose estimation for wild animals. Pattern Recognition Letters, 132, 84-90.
    Zhang, W., Wu, W., Norford, L., Li, N., & Malkawi, A. (2023). Model predictive control of short-term winter natural ventilation in a smart building using machine learning algorithms. Journal of Building Engineering, 73, 106602.
    Zhao, Z., Zheng, P., Xu, S., & Wu, X. (2019). Object Detection With Deep Learning: A Review. IEEE Transactions on Neural Networks and Learning Systems, 30(11), 3212-3232.
    Zhong, H.-Y., Sun, Y., Shang, J., Qian, F.-P., Zhao, F.-Y., Kikumoto, H., . . . Liu, X. (2022). Single-sided natural ventilation in buildings: a critical literature review. Building and Environment, 212, 108797.
    Zhou, Y. P., Wu, J. Y., & Wang, R. Z. (2007). Performance of energy recovery ventilator with various weathers and temperature set-points. Energy and Buildings, 39(12), 1202-1210.
    Zhu, J.-Y., Zheng, W.-S., Lu, F., & Lai, J.-H. (2017). Illumination invariant single face image recognition under heterogeneous lighting condition. Pattern Recognition, 66, 313-327.

    下載圖示 校內:2025-07-31公開
    校外:2025-07-31公開
    QR CODE