簡易檢索 / 詳目顯示

研究生: 陳冠霖
Chen, Kuan-Ling
論文名稱: 摻雜(錳;鎳)過渡金屬氧化鋅薄膜之結晶機制與光電磁特性
Crystallization and Optoelectro-Magnetic Properties of ZnO Thin Film by Doping (Mn; Ni) Transition Metals
指導教授: 洪飛義
Hung, Fei-Yi
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 115
中文關鍵詞: 氧化鋅通電結晶製程稀磁性半導體
外文關鍵詞: ZnO, electrical induced crystallization (EIC), diluted magnetic semiconductor (DMS), Ni, Mn
相關次數: 點閱:92下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來結合載子傳輸(carrier)與電子自旋(spin)的自旋半導體元件蓬勃發展,有良好光電性質與應用潛力之氧化鋅奈米結構為稀磁性半導體材料中具研究價值者之一。 本研究以傳統熱退火(thermal annealing)以及通電結晶製程(Electrical Induced Crystallization, EIC)方式摻雜過渡金屬原子(錳;鎳)到氧化鋅奈米結構進而提供應用參考。
    本實驗使用蒸鍍與濺鍍法分別於玻璃基板上沉積ZnO/Mn及ZnO/Ni雙層膜結構後,透過傳統熱處理方式將過渡金屬原子摻雜到ZnO薄膜中,進而提升其結晶度、改善光電特性並在室溫下形成具有鐵磁性之半導體材料。其中ZnO/Ni結構再經由低溫水溶液法成長氧化鋅奈米線,完成雙層膜與奈米線之複合結構;藉由通電結晶製程(EIC)對結構中導電金屬鎳膜施與一電壓電流而誘發焦耳熱(~240℃)和電熱效應,除了可提升薄膜與奈米結構之結晶度外亦可改善其光特性。再者,本研究通電結晶製程在室溫下進行,因此藉助通電結晶製程在ZnO/metal layer結構的掌握可應用在可撓式基材或低溫奈米元件研製。

    The spin semiconductor combined the carrier transport and electron spin characteristic. ZnO nanostructure has good optoelectronic properties with potential applications, it’s also a potential material in diluted magnetic semiconductor. In this study, we doped transition metals into ZnO nanostructure by using thermal annealing and electrical induced crystallization mechanism (EIC).
    We combined ZnO with transition metal (Mn, Ni) on SiO2 substrate. Doping transition metals improved crystallization, optoelectronic and became the diluted magnetic semiconductor by thermal annealing. In addition, the ZnO nanowires grew up on the top of ZnO/Ni films, and the metal layer was a conductive channel to perform the EIC process. The EIC process induced joule heat and electric-thermal effect into the metal film, it can improve the crystallization and optoelectro-magnetic properties.
    EIC process induced much lower temperature than thermal process. Therefore, it can use in flexible plastic substrate and low temperature nano electro-optic devices.

    中文摘要 I Abstract II 致謝 III 目錄 IV 表目錄 IX 圖目錄 X 第一章 緒論 1 1-1 前言 1 1-2 實驗動機與目的 2 第二章 理論基礎與文獻回顧 4 2-1 磁性的基礎理論 4 2-1-1 磁性的起源 4 2-1-2 磁性物質的種類 5 2-2 稀磁性半導體 (Diluted Magnetic Semiconductors, DMSs) 6 2-3 濺鍍原理 8 2-3-1 電漿的形成 8 2-3-2 濺鍍系統 10 2-3-3 磁控濺鍍系統 11 2-4 氧化鋅薄膜之結構與特性 11 2-4-1晶體結構與基礎特性 11 2-4-2 導電性質 13 2-4-3 光學性質 13 2-4-4 應用特性與改善方向 14 2-5 金屬薄膜與D/M性質 15 2-6 氧化鋅奈米線應用特性 15 2-7 氧化鋅奈米線製備方法 16 2-7-1 化學溶液合成法 16 2-8 通電結晶摻雜製程特性 17 2-8-1 通電熱處理 17 2-8-2 通電摻雜 17 2-9 研究目的 18 第三章 樣品製備與分析方法 25 3-1 實驗流程概述 25 3-2 實驗材料準備 26 3-2-1 粉末、靶材與基板 26 3-2-2 基板清洗 26 3-3 氧化鋅奈米線成長 27 3-4 熱擴散設備與條件 27 3-5 通電儀器與條件 27 3-6 鍍膜製成參數與儀器介紹 27 3-6-1 電子束蒸鍍系統 (E-gun deposition systrm) 27 3-6-2 熱蒸鍍系統 (Thermal deposition system) 28 3-6-3 濺鍍系統 (Sputtering system) 28 3-7 薄膜分析儀器 29 3-7-1 多功能X光繞射分析儀 (XRD) 29 3-7-2 掃描式電子顯微鏡 (SEM)分析 30 3-7-3 穿透式電子顯微鏡 (TEM)分析 31 3-7-4 平面電阻量測儀 32 3-7-5 可見光紫外光分光光譜儀 (UV-Vis) 33 3-7-6 霍爾量測儀 33 3-7-7 界面分析-化學分析電子光譜儀 (ESCA)鑑定 34 3-7-8 超導量子干涉震動磁量儀 (SQUID) 35 第四章 結果與討論 45 4-1 雙層薄膜材料性質 45 4-1-1 金屬錳 (Mn)薄膜物理特性 45 4-1-2 金屬鎳 (Ni)薄膜物理特性 45 4-1-3 氧化鋅 (ZnO)物理特性 46 4-2 熱擴散摻雜錳對氧化鋅薄膜之影響 47 4-2-1 氧化鋅/錳多層膜結構之材料特性 47 4-2-2 熱擴散溫度對氧化鋅薄膜摻雜錳之效應 47 4-2-3 氧化鋅/錳結構之擴散機制 48 4-2-4 熱擴散氧化鋅/錳結構之物理性質影響 50 4-3 熱擴散摻雜鎳對氧化鋅薄膜之影響 51 4-3-1 氧化鋅/鎳多層膜結構之材料特性 51 4-3-2 熱擴散溫度對氧化鋅薄膜摻鎳之效應 52 4-3-3 氧化鋅/鎳結構之擴散機制 53 4-3-4熱擴散氧化鋅/鎳結構之物理性質影響 54 4-4水溶液法合成氧化鋅奈米線結構特性 55 4-5固態通電氧化鋅奈米線/鎳結構之結晶機制 55 4-5-1 含導電層鎳膜之水溶液法成長氧化鋅奈米結構 55 4-5-2 氧化鋅奈米線/鎳固態通電與結晶特性 56 4-5-3 氧化鋅奈米線/鎳 (NW-ZnO/Ni)通電結晶之物理特性 58 4-6 被覆熱擴散機理與奈米線通電結晶探討 59 4-6-1 氧化鋅奈米線/鎳 (NW-ZnO/Ni)結構之熱擴散效應 59 4-6-2 熱擴散效應上層披覆鎳之氧化鋅奈米線 (Ni/NW-ZnO)結構特性 59 4-6-3 金屬鎳之熱擴散與通電摻雜結晶比較 61 第五章 結論 107 參考文獻 109

    1.H. Zhu, J. Huepkes, E. Bunte, J. Owen, S. M. Huang, "Novel etching method on high rate ZnO:Al thin films reactively sputtered from dual tube metallic targets for silicon-based solar cells", Solar Energy Materials and Solar Cells, Vol.95, pp.964-968, 2011.
    2.T. Dietl, H. Ohno, "Ferromagnetic III–V and II–VI Semiconductors", MRS Bulletin Oct., pp.714-719, 2003.
    3.S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnar, M. L. Roukes, A. Y. Chtchelkanova, D. M. Treger, "Spintronics: A spin-based electronics vision for the future", Science, Vol.294(5546), pp.1488-1495, 2001.
    4.H. Akinaga, H. Ohno, "Semiconductor spintronics", IEEE Transactions on Nanotechnology, Vol.1(1), pp.19-31, 2002.
    5.H. Ohno, F. Matsukura, Y. Ohno, "Semiconductor Spin Electronics", JSAP international No. 5, 2002.
    6.B. V. Mistry, P. Bhatt, K. H. Bhavsar, S. J. Trivedi, U. N. Trivedi, B. U. S. Joshi, "Growth and properties of transparent p-NiO/n-ITO (In2O3:Sn) p–n junction thin film diode", Thin Solid Films, Vol.519, pp.3840-3843, 2011.
    7.T. Dietl, "Zener Model Description of Ferromagnetism in Zinc-Blende Magnetic Semiconductors", Science, Vol.287(5455), pp.1019-1022, 2000.
    8.J. Mohapatra, D. K. Mishra, S. K. Kamilla, V. R. R. Medicherla, D. M. Phase, V. Berma, S. K. Singh, "Ni-doped ZnO: Studies on structural and magnetic properties", physica status solidi (b), Vol.248(6), pp.1352-1359, 2011.
    9.A. A. M. Farag, M. Cavas, F. Yakuphanoglu, F. M. Amanullah, "Photoluminescence and optical properties of nanostructure Ni doped ZnO thin films prepared by sol–gel spin coating technique", Journal of Alloys and Compounds, Vol.509(30), pp.7900-7908, 2011.
    10.R. N. Aljawfi, S. Mollah, "Properties of Co/Ni codoped ZnO based nanocrystalline DMS", Journal of Magnetism and Magnetic Materials, Vol.323(23), pp.3126-3132, 2011.
    11.C. Ton-That, M. Foley, M. R. Phillips, T. Tsuzuki, Z. Smith, "Correlation between the structural and optical properties of Mn-doped ZnO nanoparticles", Journal of Alloys and Compounds, Vol.522, pp.114-117, 2012.
    12.N. H. Hong, E. Chikoidze, Y. Dumont, "Ferromagnetism in laser ablated ZnO and Mn-doped ZnO thin films: A comparative study from magnetization and Hall effect measurements", Physica B: Condensed Matter, Vol.404(21), pp.3978-3981, 2009.
    13.H. Merzouk, A. Chelouche, S. Saoudi, D. Djouadi, A. Aksas, "Influence of Mn doping on structural and optical properties of ZnO nano thin films synthesized by sol–gel technique", Applied Physics A, Vol.109(4), pp.841-844, 2012.
    14.P. Srivastava, S. Ghosh, B. Joshi, P. Satyarthi, P. Kumar, D. Kanjilal, D. Buerger, S. Zhou, H. Schmidt, A. Rogalev, F. Wilhelm, "Probing origin of room temperature ferromagnetism in Ni ion implanted ZnO films with x-ray absorption spectroscopy", Journal of Applied Physics, Vol.111(1),013715, 2012.
    15.Q. Wang, J. Wang, X. Zhong, Q. Tan, Y. Zhou, "Role of oxygen vacancies in the origin of ferromagnetism in Mn-doped ZnO", Crystal Research and Technology, Vol.46(12), pp.1250-1256, 2011.
    16.F. Y. Hung, J. D. Liao, T. S. Lui, L. H. Chen, "Electrical current induced mechanism in microstructure and nano-indention of Al-Zn-Mg-Cu (AZMC) Al alloy thin film", Current Applied Physics, Vol.11(6), pp.1269-1273, 2011.
    17.C. Kittel, "Introduction of Solid State Physics", NewYork John Wiley & Sons inc., 1997.
    18.S. Chikazumi, "Physics of magnetism", Krieger Pub Co., 1978.
    19.B. D. Cullity, "Introduction to Magnetic Materials, Addison Wesley", New York, 1972.
    20.R. C. O'Handley, "Moden Magnetic Materials Principles and Applications", Wiley-Interscience, 1ed., 1999.
    21.S. Chikazumi, "Physics of Ferromagnetism", Oxford University Press, USA, 2009.
    22.H. Ohno, A. Shen, F. Matsukura, A. Oiwa, A. Endo, S. Katsumoto, Y. Iye, "(Ga,Mn)As: A new diluted magnetic semiconductor based on GaAs", Applied Physics Letters, Vol.69(3), pp.363-365, 1996.
    23.F. Matsukura, H. Ohno, A. Shen, Y. Sugawara, "Transport properties and origin of ferromagnetism in (Ga,Mn)As", Physical Review B, Vol.57(4), pp.R2037-R2040, 1998.
    24.G. A. Prinz, "Magnetoelectronics", Science, Vol.282(5394), pp.1660-1663, 1998.
    25.H. Akai, "Ferromagnetism and its stability in the diluted magnetic semiconductor (In,Mn)As", Physical Review Letters, Vol.81(14), pp.3002-3005, 1998.
    26.H. Ohno, H. Munekata, T. Penney, S. von Molnár, L. Chang, "Magnetotransport properties of p-type (In,Mn)As diluted magnetic III-V semiconductors", Physical Review Letters, Vol.68(17), pp.2664-2667, 1992.
    27.H. Munekata, H. Ohno, S. von Molnar, A. Segmüller, L. Chang, L. Esaki, "Diluted magnetic III-V semiconductors", Physical Review Letters, Vol.63(17), pp.1849-1852, 1989.
    28.K. Sato, H. Katayama-Yoshida, "Material design for transparent ferromagnets with ZnO-based magnetic semiconductors", Japanese Journal of Applied Physics Part 2-Letters, Vol.39(6B), pp.L555-L558, 2000.
    29.K. Sato, H. Katayama-Yoshida, "Stabilization of ferromagnetic states by electron doping in Fe-, Co- or Ni-doped ZnO", Japanese Journal of Applied Physics Part 2-Letters, Vol.40(4A), pp.L334-L336, 2001.
    30.K. Sato, H. Katayama-Yoshida, "Material design of GaN-based ferromagnetic diluted magnetic semiconductors", Japanese Journal of Applied Physics Part 2-Letters, Vol.40(5B), pp.L485-L487, 2001.
    31.D. S. Richerby, A. Matthews, "Advanced Surface Coating: A Handbook of Surface Engineering", Chapaman and Hall, New York, pp.92-100, 1992.
    32.W. L. Wang, "An Investigation on Microstructure and Opto-electrical Characteristics of ZnO-In/Ag-ZnO Thin Films Using the Electrical Current Mechanism", Thesis for Master of Science of NCKU Institute of Nanotechnology and Microsystems Engineering, 2009.
    33.B. Chapman, "Glow Discharge Processes", John Wiley and Sons, New York, 1980.
    34.D. M. Mattox, "Handbook of Physical Processing Technology", Noyes Publications, Park Ridgs, New Jersey, pp.341-343, 1989.
    35.D. M. Mattox, "Handbook of Physical Vapor Deposition (PVD) Processing", Noyes Publications, Westwood, New Jersey, pp.330-333, 1998.
    36.A. C. Mofor, A. S. Bakin, B. Postels, M. Suleiman, A. Elshaer, A. Waag, "Growth of ZnO layers for transparent and flexible electronics", Thin Solid Films, Vol.516(7), pp.1401-1404, 2008.
    37.D. C. Agarwal, R. S. Chauhan, A. Kumar, D. Kabiraj, F. Singh, S. A. Khan, D. K. Avasthi, J. C. Pivin, M. Kumar, J. Ghatak, P. V. Satyam, "Synthesis and characterization of ZnO thin film grown by electron beam evaporation", Journal of Applied Physics, Vol.99(12),123105, 2006.
    38.Y. F. Mei, G. G. Siu, R. K. Y. Fu, P. K. Chu, Z. M. Li, Z. K. Tang, "Room-temperature electrosynthesized ZnO thin film with strong (002) orientation and its optical properties", Applied Surface Science, Vol.252(8), pp.2973-2977, 2006.
    39.A. P. Roth, J. B. Webb, D. F. Williams, "Absorption-edge shift in zno thin-film at high carrier densities", Solid State Communications, Vol.39(12), pp.1269-1271, 1981.
    40.N. Kavasoglu, A. S. Kavasoglu, "Metal-semiconductor transition in undoped ZnO films deposited by spray pyrolysis", Physica B-Condensed Matter, Vol.403(17), pp.2807-2810, 2008.
    41.N. Fujimura, T. Nishihara, S. Goto, J. F. Xu, T. Ito, "Control of preferred orientation for znox films-control of self-texture", Journal of Crystal Growth, Vol.130(1-2), pp.269-279, 1993.
    42.C. Gumus, O. M. Ozkendir, H. Kavak, Y. Ufuktepe, "Structural and optical properties of zinc oxide thin films prepared by spray pyrolysis method", Journal of Optoelectronics and Advanced Materials, Vol.8(1), pp.299-303, 2006.
    43.Y. F. Zhu, G. H. Zhou, H. Y. Ding, A. H. Liu, Y. B. Lin, N. L. Li, "Synthesis of highly-ordered hierarchical ZnO nanostructures and their application in dye-sensitized solar cells", Crystal Research and Technology, Vol.45(10), pp.1075-1078, 2010.
    44.J. Hong, H. Paik, H. Hwang, S. Lee, A. J. Demello, K. No, "The effect of growth temperature on physical properties of heavily doped ZnO:Al films", Physica Status Solidi a-Applications and Materials Science, Vol.206(4), pp.697-703, 2009.
    45.V. K. Sharma, M. Najim, A. K. Srivastava, G. D. Varma, "Structural and magnetic studies on transition metal (Mn, Co) doped ZnO nanoparticles", Journal of Magnetism and Magnetic Materials, Vol.324(5), pp.683-689, 2012.
    46.W. Yu, L. H. Yang, X. Y. Teng, J. C. Zhang, Z. C. Zhang, L. Zhang, G. S. Fu, "Influence of structure characteristics on room temperature ferromagnetism of Ni-doped ZnO thin films", Journal of Applied Physics, Vol.103(9),093901, 2008.
    47.S. Muthukumaran, R. Gopalakrishnan, "Structural, optical and photoluminescence studies of heavily Mn-doped ZnO nanoparticles annealed under Ar atmosphere", Journal of Materials Science: Materials in Electronics, Vol.23(7), pp.1393-1401, 2011.
    48.M. C. Jeong, B. Y. Oh, M. H. Ham, J. M. Myoung, "Electroluminescence from ZnO nanowires in n-ZnO film/ZnO nanowire array/p-GaN film heterojunction light-emitting diodes", Applied Physics Letters, Vol.88(20),202105, 2006.
    49.J. Y. Chen, C. J. Pan, F. C. Tsao, C. H. Kuo, G. C. Chi, B. J. Pong, C. Y. Chang, D. P. Norton, S. J. Pearton, "Characterization of ZnO nanowires grown on Si (100) with and without Au catalyst", Vacuum, Vol.83(7), pp.1076-1079, 2009.
    50.J. Zhao, L. Wang, X. Yan, Y. Yang, Y. Lei, J. Zhou, Y. Huang, Y. Gu, Y. Zhang, "Structure and photocatalytic activity of Ni-doped ZnO nanorods", Materials Research Bulletin, Vol.46(8), pp.1207-1210, 2011.
    51.M. K. Sharma, R. N. Gayen, A. K. Pal, D. Kanjilal, R. Chatterjee, "Room temperature ferromagnetism in Mn-doped zinc oxide nanorods prepared by hybrid wet chemical route", Journal of Alloys and Compounds, Vol.509(26), pp.7259-7266, 2011.
    52.R. N. Gayen, A. Rajaram, R. Bhar, A. K. Pal, "Ni-doped vertically aligned zinc oxide nanorods prepared by hybrid wet chemical route", Thin Solid Films, Vol.518(6), pp.1627-1636, 2010.
    53.X. D. Wang, J. H. Song, J. Liu, Z. L. Wang, "Direct-current nanogenerator driven by ultrasonic waves", Science, Vol.316(5821), pp.102-105, 2007.
    54.L. Vayssieres, "Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions", Advanced Materials, Vol.15(5), pp.464-466, 2003.
    55.H. J. Park, J. H. Park, J. I. Choi, J. Y. Lee, J. H. Chae, D. Kim, "Fabrication of transparent conductive films with a sandwich structure composed of ITO/Cu/ITO", Vacuum, Vol.83(2), pp.448-450, 2008.
    56.M. Eskandari, V. Ahmadi, S. H. Ahmadi, "Growth of Al-doped ZnO nanorod arrays on the substrate at low temperature", Physica E-Low-Dimensional Systems & Nanostructures, Vol.42(5), pp.1683-1686, 2010.
    57.T. T. Loan, N. N. Long, L. H. Ha, "Photoluminescence properties of Co-doped ZnO nanorods synthesized by hydrothermal method", Journal of Physics D-Applied Physics, Vol.42(6),065412, 2009.
    58.B. D. Cullity, S. R. Stock, "Elements of X-Ray Diffraction", Prentice Hall, 3rd ed., 2001.
    59.F. M. Smits, "Measurement of Sheet Resisitivities with the Four-Point Probe", Bell System Technical Journal, Vol.37, pp.711-718, 1958.
    60.S. R. S. Kumar, M. N. Hedhili, H. N. Alshareef, S. Kasiviswanathan, "Correlation of Mn charge state with the electrical resistivity of Mn doped indium tin oxide thin films", Applied Physics Letters, Vol.97(11),111909, 2010.
    61.L. Duan, X. Zhao, J. Liu, W. Geng, H. Xie, S. Chen, "Structural, thermal and magnetic investigations of heavily Mn-doped ZnO nanoparticles", Journal of Magnetism and Magnetic Materials, Vol.323(18-19), pp.2374-2379, 2011.

    下載圖示 校內:2016-07-12公開
    校外:2018-07-12公開
    QR CODE