| 研究生: |
石馨宇 Shih, Hsin-Yu |
|---|---|
| 論文名稱: |
以數位雙生技術為基礎建構遠端塔吊作業之架構 Constructing a Framework for Remote Tower Crane Operations Based on Digital Twin Technology |
| 指導教授: |
馮重偉
Feng, Chung-Wei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 111 |
| 中文關鍵詞: | 塔吊作業 、虛擬實境 、數位雙生 、建築資訊模型 |
| 外文關鍵詞: | Crane Operations, Virtual Reality, Digital Twin , Building Information Modeling (BIM) |
| 相關次數: | 點閱:37 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
塔吊作業在現代建築工地扮演著舉足輕重的角色,負責工地各種物料的運輸。然而,由於建築工地環境複雜,使得塔吊作業涉及高度技術需求,其作業過程蘊含許多風險。傳統塔吊操作需要塔吊司機在現場直接操控,暴露於危險環境中,因此如何提高塔吊作業的安全性及效率成為關注焦點。
本研究旨在設計一個支持遠端操作塔吊的數位雙生架構,透過實時監控,映射現地環境變動於虛擬模型,使司機能虛擬模型中獲得足夠資訊執行遠端操作任務,有效減少塔吊作業中的事故發生率,並提升作業效率。研究目標為解析塔吊作業需求及風險因子,並應用數位雙生概念設計操作介面及框架,在此框架下建構模擬遠端操作平台,最終通過專家訪談和操作回饋驗證其可行性和效果。
先對傳統塔吊作業流程進行深入分析,並通過專家訪談了解實際操作中的問題與挑戰。根據塔吊作業具體需求,設計出操作者介面。此系統允許操作員在遠端安全地控制塔吊,同時通過數位雙生技術確保操作的高度精確性和實時反應。
隨後,根據分析結果選擇適合的傳感器和傳輸技術,設計出碰撞檢測和運轉警戒範圍偵測系統,以提升遠端操作的精確度和實時監控能力。傳感器將實時收集數據,並通過數位雙生技術將其轉化為虛擬模型中的動態變化,從而使操作員能夠在遠端精確控制塔吊,預防潛在風險。
本研究設計了一個支持遠端操作的數位雙生架構。操作介面的實用性和數據滿足性通過現地塔吊司機的使用和反饋來驗證,證明操作人員能在無需接觸塔吊的情況下,安全有效地完成作業,顯著降低高風險作業的事故發生率。這一架構為未來建構遠端操作塔吊奠定了基礎,展示了數位雙生技術在營建領域中的應用潛力和前景。
Tower crane operations are crucial in modern construction sites, responsible for transporting various materials. However, due to the complex environment of construction sites, crane operations involve high technical demands and significant risks. Traditional crane operations require operators to be on-site, exposing them to hazardous conditions. Therefore, improving the safety and efficiency of crane operations is a primary concern.
This study aims to design a digital twin framework to support remote tower crane operations. Through real-time monitoring and mapping real-world changes into a virtual model, operators can obtain sufficient information to perform remote tasks, effectively reducing accident rates and enhancing operational efficiency. The research objectives include analyzing the needs and risk factors of crane operations, applying the digital twin concept to design an operational interface and framework, constructing a simulated remote operation platform, and validating its practicality and effectiveness through expert interviews and feedback from the operational platform.
[1] Bucchiarone, A., De Sanctis, M., Hevesi, P., Hirsch, M., Royo Abancéns, F. J., Fernández Vivanco, P., & Amiraslanov, O. (2019). Smart Construction: Remote and Adaptable Management of Construction Sites through IoT. IEEE Internet of Things Magazine, 2(3), 38-45.
[2] Chen, L., Zhang, S., & Wu, X. (2020). Visual and physical obstructions in crane operations: Implications for safety. Journal of Construction Engineering and Management, 146(4), 05020001.
[3] Cheng, Zhou, Hanbin Luo, Weili Fang, Ran Wei, Lieyun Ding (2019). Cyber-physical-system-based safety monitoring for blind hoisting with the internet of things: A case study. Automation in Construction, 97, 138-150. DOI: 10.1016/j.autcon.2018.10.020.
[4] Chernyshev, D., Dolhopolov, S., Honcharenko, T., Haman, H., Ivanova, T., & Zinchenko, M. (2022). Integration of Building Information Modeling and Artificial Intelligence Systems to Create a Digital Twin of the Construction Site. 2022 IEEE 17th International Conference on Computer Sciences and Information Technologies (CSIT). https://doi.org/10.1109/CSIT56902.2022.10000717.
[5] Dong, M. S., Yang, B., Han, Y. L., Jiang, S. S., & Liu, B. D. (2023). Construction process simulation facing digital twin. Proceedings of The 17th East Asian-Pacific Conference on Structural Engineering and Construction, LNCE 302, Springer, Singapore, 264–283. DOI: 10.1007/978-981-19-7331-4_22.
[6] Gong, P., & Caldas, C. H. (2008). Real-time 3D construction modeling for crane operations. Automation in Construction, 17(7), 930-941. DOI: 10.1016/j.autcon.2008.02.015.
[7] Guo, H., Zhou, Y., Pan, Z., Zhang, Z., Yu, Y., & Li, Y. (2022). Automated Selection and Localization of Mobile Cranes in Construction Planning. Buildings, 12(5), 580. DOI: 10.3390/buildings12050580.
[8] Hasan, S. M., Lee, K., Moon, D., Kwon, S., Jinwoo, S., & Lee, S. (2021). Augmented reality and digital twin system for interaction with construction machinery. Journal of Asian Architecture and Building Engineering, 21(2), 564-574. DOI: 10.1080/13467581.2020.1869557.
[9] Johnson, L., Robertson, S., & Smith, J. (2017). Human factors in crane-related accidents in construction. Journal of Safety Research, 48, 133-141.
[10] Khallaf, R., Khallaf, L., Anumba, C. J., & Madubuike, O. C. (2022). Review of Digital Twins for Constructed Facilities. Buildings, 12(11), 2029. https://doi.org/10.3390/buildings12112029.
[11] Lee, J., and Lee, S. (2023). "Construction site safety management: A computer vision and deep learning approach." Sensors, 23(2), 944. https://doi.org/10.3390/s23020944.
[12] Lee, K. H., & Park, J. S. (2019). Communication failures and accidents in crane operations. Ergonomics, 62(2), 244-253.
[13] Leonovich, S. N., & Riachi, J. (2021). 3D-Modeling for Life Cycle of the Structure. Science and Technique, 20(1), 5-9. https://doi.org/10.21122/2227-1031-2021-20-1-5-9.
[14] Li, H., Chan, G., & Skitmore, M. (2013). Integrating real time positioning systems to improve blind lifting and loading crane operations. Construction Management and Economics, 31(6), 596-605. DOI: 10.1080/01446193.2012.756144.
[15] Ngo, D., Tran, H., & Nguyen, V. (2023). Assessment of human factors in crane operations in Vietnam. International Journal of Industrial Ergonomics, 83, 102-110.
[16] Nguyen, T.T., & Feng, C.W. (2023). The Framework of Developing the Cyber-Physical Environment for Construction Operations. (Master’s thesis, National Cheng Kung University). National Cheng Kung University.
[17] Omrany, H., Al-Obaidi, K. M., Husain, A., & Ghaffarianhoseini, A. (2023). Digital Twins in the Construction Industry: A Comprehensive Review of Current Implementations, Enabling Technologies, and Future Directions. Sustainability, 15(14), 10908.
[18] OSHA. (2017). Crane, Derrick and Hoist Safety. Retrieved from OSHA website.
[19] Savelyevna, N. S., Volkov, E. A., & Litovchenko, E. P. (2014). Justification for Remote Control of Construction and Road-Making Machines. Modern Applied Science, 8(5), 179-185. doi:10.5539/mas.v8n5p179.
[20] Sitompul, T. A. (2022). Human–Machine Interface for Remote Crane Operation: A Review. Multimodal Technologies and Interaction, 6(6), 45. DOI: 10.3390/mti6060045.
[21] Smith, J., Wale, K., & Daniels, R. (2018). Subcontracting and safety outcomes in construction: The case of cranes. Journal of Construction Management, 34(6), 423-430.
[22] Tam, V. W. Y., & Fung, I. W. H. (2011). Tower crane safety in the construction industry: A Hong Kong study. Safety Science, 49(1), 208-215. doi:10.1016/j.ssci.2010.08.001.
[23] Wang, Y., Li, S., & Liu, J. (2021). Improving safety and efficiency of crane operations through technological integration. Automation in Construction, 121, 103517.
[24] Yang, C., Tu, X., Autiosalo, J., Ala-Laurinaho, R., Mattila, J., Salminen, P., & Tammi, K. (2022). Extended Reality Application Framework for a Digital-Twin-Based Smart Crane. Applied Sciences, 12, 6030. DOI: 10.3390/app12126030.
[25] Zhao, C. H., Zhang, J., Zhong, X. Y., Zeng, J., and Chen, S. J. (2011). "Analysis of Tower Crane Accidents Using the Fishbone Diagram and Analysis Hierarchy Process." Applied Mechanics and Materials, 127, 139-143. https://doi.org/10.4028/www.scientific.net/AMM.127.139
[26] Zhang, P., Teizer, J., Lee, J. K., Eastman, C. M., & Venugopal, M. (2014). Building Information Modeling (BIM) and Safety: Automatic Safety Checking of Construction Models and Schedules. Automation in Construction, 29, 183-195. DOI: 10.1016/j.autcon.2012.05.006.
[27] Zhou, T., Zhu, Q., & Du, J. (2020). Intuitive robot teleoperation for civil engineering operations with virtual reality and deep learning scene reconstruction. Advanced Engineering Informatics, 46, 101170. https://doi.org/10.1016/j.aei.2020.101170.
[28] Basavaraj, M. U., Raghuram, H., and Mohana. (2023). "Real Time Object Distance and Dimension Measurement using Deep Learning and OpenCV." Proceedings of the Third International Conference on Artificial Intelligence and Smart Energy (ICAIS 2023), IEEE, Bengaluru, Karnataka, India, 929-932. https://doi.org/10.1109/ICAIS56108.2023.10073888
[29] Othman, N. A., Salur, M. U., Karakose, M., and Aydin, I. (2018). "An Embedded Real-Time Object Detection and Measurement of its Size." Proceedings of the Third International Conference on Artificial Intelligence and Data Processing (IDAP), IEEE, Malatya, Turkey, 1-6. https://doi.org/10.1109/IDAP.2018.8620721