簡易檢索 / 詳目顯示

研究生: 劉力夫
Liu, Li-Fu
論文名稱: 利用雷射杜卜勒微流儀及功能性近紅外線光譜系統測量缺血性中風老鼠大腦血流及血氧飽和度變化
Measurement of Cerebral Blood Flow and Oxygen Saturation Using Laser Doppler Flowmetry and Functional Near Infrared Spectroscopy in Ischemic Stroke Rats
指導教授: 陳家進
Chen, Jia-Jin J.
學位類別: 碩士
Master
系所名稱: 工學院 - 醫學工程研究所
Institute of Biomedical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 32
中文關鍵詞: 雷射都卜勒微流儀功能性近紅外線光譜系統中大腦動脈阻塞中風
外文關鍵詞: Laser Doppler flowmetry, Middle cerebral artery occlusion, Functional near infrared spectroscopy, Stroke
相關次數: 點閱:97下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 功能性近紅外線光譜系統已經被發展用來量測含氧血紅蛋白及脫氧血紅蛋白濃度變化,並提供總血紅蛋白濃度及血氧飽和度訊息。近年來,功能性近紅外線光譜系統已被廣泛運用在人類及動物來評估腦氧供需、血液動力學及神經活動狀態。然而,到目前為止,近紅外線光譜系統參數對於缺血性中風的臨床價值仍有待探討。本篇研究利用雷射都卜勒微流儀與功能性近紅外線光譜系統來探討短暫性中大腦動脈阻塞老鼠其大腦血流與功能性近紅外線光譜系統參數的關連。此外,在第二階段的實驗,永久性中大腦動脈阻塞老鼠其功能性近紅外線光譜系統參數也被記錄持續到術後第四天。研究結果發現:在阻塞期間,腦部血流下降54.58 ± 6.38%,血氧飽和度下降14.49 ± 2.82%,含氧血紅蛋白及總血紅蛋白分別下降28.47 ± 9.10 μM及11.66 ± 10.23 μM,脫氧血紅蛋白則上升16.82 ± 4.63 μM。結果顯示血氧飽和度的變化與血流變化有明顯的正相關。然而,血流變化與總血紅蛋白濃度變化(代表總血量變化)並不一致。永久性中大腦動脈阻塞老鼠長期監控的結果則顯示血氧飽和度和含氧血紅蛋白濃度的變化與老鼠術後行為的恢復有相同的趨勢。研究結果認為功能性近紅外線光譜系統可以非侵入式並有效地監控缺血性中風血液動力學變化,並做為未來有關治療方法的評估工具。

    Functional near infrared spectroscopy (fNIRS) has been developed as a noninvasive technique to measure the changes in concentrations of oxygenated hemoglobin (HbO2), deoxygenated hemoglobin (Hb) and total hemoglobin (HbT) as well as cerebral oxygen saturation (StO2). Recently, fNIRS has been utilized to assess cerebral oxygenation, hemodynamics and neuronal activity in animals and humans. However, the research is still at an early stage in evaluating the value of fNIRS in ischemia stroke. In the present study, we applied laser Doppler flowmetry (LDF) and fNIRS to compare the changes in cerebral blood flow (CBF) with the changes of fNIRS-parameters in rats subject to temporary (60-mins) middle cerebral artery occlusion (MCAO). In addition, fNIRS-parameters were recorded from the initial ischemic events up to the forth day after permanent ischemia. Ischemic changes, averaged over the 60 minutes of occlusion, were as follows: △CBF = -54.58 ± 6.38%, △StO2 = -14.49 ± 2.82%, △HbT = -11.66 ± 10.23 μM, △HbO2 = -28.47 ± 9.10 μM, △Hb = 16.82 ± 4.63 μM. Our results revealed good correlation between the changes in flow and StO2. Mismatch between cerebral blood flow and volume was also found. The results of time course monitoring in permanent ischemia rats showed that the changes in concentrations of HbO2 and in StO2 were similar to the behavioral recovery. Our study concluded that fNIRS might be a practical tool for noninvasive and continuous monitoring the condition of ischemic stroke and for future evaluation methods for novel therapeutic schemes.

    Chinese Abstract..........................................i Abstract.................................................ii 致謝....................................................iii Content.................................................iv List of Tables..........................................vi List of Figures.........................................vii Chapter 1 Introduction....................................1 1.1 Cerebral blood flow changes in ischemic stroke rats...1 1.2 Laser Doppler flowmetry (LDF).........................3 1.2.1 Applications of Doppler effect......................3 1.2.2 Parameter of LDF: CBF...............................4 1.3 Functional near infrared spectroscopy (fNIRS).........6 1.3.1 Application of modified Beer-Lambert law............6 1.3.2 Parameters of fNIRS: HbO2 and Hb concentration......8 1.4 Motivations and the aims of this study................9 Chapter 2 Materials and Methods..........................11 2.1 Animals..............................................11 2.2 Comparison between CBF and fNIRS-parameters in temporary ischemia rats..................................11 2.2.1 Temporary focal ischemia...........................11 2.2.2 Continuous monitoring of CBF using LDF.............12 2.2.3 Functional near infrared spectroscopy (fNIRS)......13 2.2.4 Quantification of infract volume...................15 2.3 Time course observation on CBF, fNIRS-parameters and behavioral recovery in permanent ischemia rats...........16 2.4 Data Analysis........................................18 Chapter 3 Results....................................... 19 3.1 CBF and fNIRS-parameters after ischemia and reperfusion..............................................19 3.2 Relationship between regional CBF and behavior recovery.................................................22 3.3 Relationship between fNIRS-parameters and behavior recovery.................................................23 Chapter 4 Discussions and Conclusions....................25 References...............................................28

    Alkayed NJ, Harukuni I, Kimes AS, London ED, Traystman RJ, Hurn PD. (1998) Gender-linked brain injury in experimental stroke. Stroke 29:159-165

    Astrup J, Symon L, Branston NM, Lassen NA. (1977) Cortical evoked potential and extracellular K+ and H+ at critical levels of brain ischemia. Stroke 8:51-57

    Astrup J, Siesjo BK, Symon L. (1981) Thresholds in cerebral ischemia - the ischemic penumbra. Stroke 12:723-725

    Bamford J, Sandercock P, Dennis M, Burn J, Warlow C. (1991) Classification and natural history of clinically identifiable subtypes of cerebral infarction. Lancet 337:1521-1526

    Bederson JB, Pitts LH, Tsuji M, Nishimura MC, Davis RL, Bartkowski H. (1986) Rat middle cerebral artery occlusion: evaluation of the model and development of a neurologic examination. Stroke 17:472-476

    Boas DA, Gaudette T, Strangman G, Cheng X, Marota JJ, Mandeville JB. (2001) The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics. Neuroimage 13:76-90

    Bolander HG, Persson L, Hillered L, d'Argy R, Ponten U, Olsson Y. (1989) Regional cerebral blood flow and histopathologic changes after middle cerebral artery occlusion in rats. Stroke 20:930-937

    Boulton AA, Baker GB, Butterworth RF (1992) Neuromethods: Animal Models of Neurological Disease, New Jersey, Humana Press.

    Bozkurt A, Rosen A, Rosen H, Onaral B. (2005) A portable near infrared spectroscopy system for bedside monitoring of newborn brain. Biomed Eng Online 4:29

    Caplan LR. (1993) Stroke: A Clinical Approach, Boston, Butterworth-Heinemann.

    Culver JP, Durduran T, Furuya D, Cheung C, Greenberg JH, Yodh AG. (2003) Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia. J Cereb Blood Flow Metab 23:911-924

    Demet G, Talip A, Nevzat U, Serhat O, Gazi O. (2000) The evaluation of cerebral oxygenation by oximetry in patients with ischaemic stroke. J Postgrad Med 46:70-74

    Dirnagl U, Kaplan B, Jacewicz M, Pulsinelli W. (1989) Continuous measurement of cerebral cortical blood flow by laser-Doppler flowmetry in a rat stroke model. J Cereb
    Blood Flow Metab 9:589-596

    Garcia JH, Wagner S, Liu KF, Hu XJ. (1995) Neurological deficit and extent of neuronal necrosis attributable to middle cerebral artery occlusion in rats. Statistical validation. Stroke 26:627-634

    Garcia JH, Liu KF, Ho KL. (1995) Neuronal necrosis after middle cerebral artery occlusion in Wistar rats progresses at different time intervals in the caudoputamen and the cortex. Stroke 26:636-642

    Gerriets T, Li F, Silva MD, Meng X, Brevard M, Sotak CH, Fisher M. (2003) The macrosphere model: evaluation of a new stroke model for permanent middle cerebral artery occlusion in rats. J Neurosci Methods 122:201-211

    Ginsberg MD, Busto R. (1989) Rodent models of cerebral ischemia. Stroke 20:1627-1642

    Gopinath SP, Robertson CS, Contant CF, Narayan RK, Grossman RG, Chance B. (1995) Early detection of delayed traumatic intracranial hematomas using near-infrared spectroscopy. J Neurosurg 83:438-444

    Gratton G, Goodman-Wood MR, Fabiani M. (2001) Comparison of neuronal and hemodynamic measures of the brain response to visual stimulation: an optical imaging study. Hum Brain Mapp 13:13-25

    Heiss WD, Hayakawa T, Waltz AG. (1976) Cortical neuronal function during ischemia. Effects of occlusion of one middle cerebral artery on single-unit activity in cats. Arch Neurol 33:813-820

    Hou H, Grinberg OY, Grinberg SA, Demidenko E, Swartz HM. (2005) Cerebral tissue oxygenation in reversible focal ischemia in rats: multi-site EPR oximetry measurements. Physiol Meas 26:131-141

    Hu HH, Sheng WY, Chu FL, Lan CF, Chiang BN. (1992) Incidence of stroke in Taiwan. Stroke 23:1237-1241
    Jobsis FF. (1977) Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science 198:1264-1267

    Kilic E, Hermann DM, Hossmann KA. (1998) A reproducible model of thromboembolic stroke in mice. Neuroreport 9:2967-2970

    Kuge Y, Minematsu K, Yamaguchi T, Miyake Y. (1995) Nylon monofilament for intraluminal middle cerebral artery occlusion in rats. Stroke 26:1655-1657

    Lee EJ, Wu TS, Lee MY, Chen TY, Tsai YY, Chuang JI, Chang GL. (2004) Delayed treatment with melatonin enhances electrophysiological recovery following transient focal cerebral ischemia in rats. J Pineal Res 36:33-42

    Liao CC, Li TC, Lin RS, Sung FC. (2006) Urban and rural difference in prevalence and incidence of stroke in 2000 in Taiwan. Taiwan J Public Health 25:223-230

    Longa EZ, Weinstein PR, Carlson S, Cummins R. (1989) Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 20:84-91

    Nagasawa H, Kogure K. (1989) Correlation between cerebral blood flow and histologic changes in a new rat model of middle cerebral artery occlusion. Stroke 20:1037-1043

    Oberg PA, Tenland T, Nilsson GE. (1984) Laser-Doppler flowmetry: a non-invasive and continuous method for blood flow evaluation in microvascular studies. Acta Med Scand Suppl 687:17-24

    Owen-Reece H, Smith M, Elwell CE, Goldstone JC. (1999) Near infrared spectroscopy. Br J Anaesth 82:418-426

    Pei Z, Pang SF, Cheung RT. (2002) Pretreatment with melatonin reduces volume of cerebral infarction in a rat middle cerebral artery occlusion stroke model. J Pineal Res 32:168-172

    Riva CE. (2001) Basic principles of laser Doppler flowmetry and application to the ocular circulation. Int Ophthalmol 23:183-189

    Selman WR, Ricci AJ, Crumrine RC, LaManna JC, Ratcheson RA, Lust WD. (1990) The evolution of focal ischemic damage: a metabolic analysis. Metab Brain Dis 5:33-44

    Shepherd AP, Oberg PA. (1990) Laser-Doppler Blood Flowmetry, Boston, Kluwer Academic Publishers.

    Sorensen AG, Copen WA, Ostergaard L, Buonanno FS, Gonzalez RG, Rordorf G, Rosen BR, Schwamm LH, Weisskoff RM, Koroshetz WJ. (1999) Hyperacute stroke: simultaneous measurement of relative cerebral blood volume, relative cerebral blood flow, and mean tissue transit time. Radiology 210:519-527

    Soriano MA, Sanz O, Ferrer I, Planas AM. (1997) Cortical infarct volume is dependent on the ischemic reduction of perifocal cerebral blood flow in a three-vessel intraluminal MCA occlusion/reperfusion model in the rat. Brain Res 747:273-278

    Villringer A, Chance B. (1997) Non-invasive optical spectroscopy and imaging of human brain function. Trends Neurosci 20:435-442

    Wolf T, Lindauer U, Reuter U, Back T, Villringer A, Einhaupl K, Dirnagl U. (1997) Noninvasive near infrared spectroscopy monitoring of regional cerebral blood oxygenation changes during peri-infarct depolarizations in focal cerebral ischemia in the rat. J Cereb Blood Flow Metab 17:950-954

    Wolf M, Wolf U, Choi JH, Toronov V, Paunescu LA, Michalos A, Gratton E. (2003) Fast cerebral functional signal in the 100-ms range detected in the visual cortex by frequency-domain near-infrared spectrophotometry. Psychophysiology 40:521-528

    Wood JH. (1987) Cerebral Blood Flow: Physiologic and Clinical Aspects, New York, McGraw-Hill.

    Wyatt JS, Cope M, Delpy DT, Richardson CE, Edwards AD, Wray S, Reynolds EO. (1990) Quantitation of cerebral blood volume in human infants by near-infrared spectroscopy. J Appl Physiol 68:1086-1091

    Wyatt JS. (1992) Near infrared spectroscopy. Investigation and assessment of perinatal brain injury. Biol Neonate 62:290-294

    Yanamoto H, Nagata I, Hashimoto N, Kikuchi H. (1998) Three-vessel occlusion using a micro-clip for the proximal left middle cerebral artery produces a reliable neocortical infarct in rats. Brain Res Brain Res Protoc 3:209-220

    Yang G, Chan PH, Chen J, Carlson E, Chen SF, Weinstein P, Epstein CJ, Kamii H. (1994) Human copper-zinc superoxide dismutase transgenic mice are highly resistant to reperfusion injury after focal cerebral ischemia. Stroke 25:165-170

    Zaharchuk G, Yamada M, Sasamata M, Jenkins BG, Moskowitz MA, Rosen BR. (2000) Is all perfusion-weighted magnetic resonance imaging for stroke equal? The temporal evolution of multiple hemodynamic parameters after focal ischemia in rats correlated with evidence of infarction. J Cereb Blood Flow Metab 20:1341-1351

    下載圖示 校內:2008-08-14公開
    校外:2008-08-14公開
    QR CODE