| 研究生: |
林詠翔 Lin, Yung-Shiang |
|---|---|
| 論文名稱: |
具不同管徑之板鰭管式熱交換器的熱傳特性研究 Study of Heat Transfer Characteristics for Vertical Plate Fin and Tube Heat Exchangers with Different Tube Diameters |
| 指導教授: |
陳寒濤
Chen, Han-Taw |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 99 |
| 中文關鍵詞: | 逆運算法 、數值模擬 、板鰭管式熱交換器 、熱傳特性 |
| 外文關鍵詞: | Inverse scheme, Numerical simulation, Plate-fin and tube heat exchangers, Heat transfer characteristics |
| 相關次數: | 點閱:198 下載:17 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文以逆算法與CFD軟體搭配實驗方法探討板鰭管式熱交換器熱傳特性的研究,並探討鰭片間距、正向風速與管徑對所得結果之影響。由於鰭片上的熱傳係數分布是不均勻的,因此將鰭片劃分為數個子區域並假設各子區域之熱傳係數為常數,再搭配有限差分法、最小平方法及實驗溫度量測值之逆算法來預測鰭片上的熱傳係數。本文亦利用CFD軟體求得速度分佈、鰭片表面之溫度以及熱傳係數,為了求出本研究較正確之熱傳及流體流動特性,選用適當的流動模式及網格格點數所求得之鰭片上的量測點溫度及熱傳係數,須盡可能接近實驗溫度量測值與逆運算結果。本文之結果顯示在自然對流與混合對流中,RNG k-ε模式所求得結果皆較為準確。
The present study applies the inverse method and CFD software in conjunction with the experimental method to predict the heat characteristics of plate-fin and tube heat exchangers. The effects of parameters such as fin pitch, air velocity and tube diameter are examined. Since the heat transfer coefficient on the fin is not uniform, the fin is divided into several sub-regions and the heat transfer coefficient in each sub-regions is assumed to be a constant. Later, the inverse method applies finite difference method in conjunction with the least-squares scheme and the experimental data to estimate the heat transfer coefficient on the fins. Furthermore, how to choose the appropriate flow model and the effect of grid points are also investigated. Velocity, temperature and heat transfer coefficient distributions of the fin are determined using the CFD software. More accurate results can be obtained if the heat transfer coefficient is closed to the inverse results and matches the existing correlations. The results obtained using the RNG-k-ε turbulence flow model are more accurate for natural convection and mixed convection.
[1]F.E.M. Saboya, E.M. Sparrow, “Local and average heat transfer coefficients for one-row plate fin and tube heat exchanger configurations”, ASME J. Heat Transfer, Vol.96, pp.265-272, 1974.
[2]T.V. Jones, C.M.B. Russell, “Efficiency of rectangular fins”, SME/AIChE National Heat Transfer Conference, Orlando, Florida, pp.27-30, 1980.
[3]E.C. Rosman, P. Carajilescov, F.E.M. Saboya, “Performance of One and Two-row Tube and Plate Fin Heat Exchangers”, ASME J. Heat Transfer, Vol.106, pp.627-632, 1984.
[4]R.L. Webb, “Principle of Enhanced Heat Transfer”, Wiley, New York, pp.125-153, 1994.
[5]Rich, D.G., “The Effect of Fin Spacing on the Heat Transfer and Friction Performance of Multi-Row Plate Fin-and-Tube Heat Exchangers”, ASHRAE Trans., Vol.79, Part 2, pp.137-145, 1973.
[6]Rich, D.G., “The Effect of the Number of Tube Rows on the Heat Transfer Performance of Smooth Plate Fin-and-Tube Heat Exchangers”, ASHRAE Trans., Vol.81, Part 1, pp.307-317, 1975.
[7]F.C. McQuiston, “Correlation of heat, mass and momentum transport coefficients for plate-fin-tube heat transfer surface with staggered tubes”, ASHRAE Transactions, Vol.84, pp.294-308, 1978.
[8]D.L. Gray, R.L. Webb, “Heat Transfer and Friction Correlations for Plate Fin-and-Tube Heat Exchangers Having Plain Fins”, Proc. 9th Int. Heat Transfer Conference, San Francisco, U.S.A., 1986.
[9]H. Ay, J.Y. Jang, J.N. Yeh, “Local heat transfer measurements of plate finned-tube heat exchangers by infrared thermography”, Int. J. Heat Mass Transfer, Vol.45, pp.4069-4078, 2002.
[10]C.J. Chen, T.S. Wung, “Finite Analytic Solution of Convective Heat Transfer for Tube Arrays in Crossflow: Part II—Heat Transfer Analysis”, Journal of Heat Transfer, Vol.111, pp.641-648, 1989.
[11]J.Y. Jang, M.C. Wu, W. J. Chang, “Numerical and experimental studies of three-dimensional plate-fin and tube heat exchangers”, Int. J. Heat Mass Transfer, Vol.39, pp.3057-3066, 1995.
[12]H.T. Chen, J.C. Chou, “Investigation of natural-convection heat transfer coefficient on a vertical square fin of finned-tube heat exchangers”, Int. J. Heat Mass Transfer, Vol.49, pp.3034–3044, 2006.
[13]H.T. Chen, J.C. Chou, H.C. Wang, “Estimation of heat transfer coefficient on the vertical plate fin of finned-tube heat exchangers for various air speeds and fin spacings”, Int. J. Heat Mass Transfer, Vol.50, pp.45–57, 2007.
[14]C.H. Huang, I.C. Yuan, H. Ay, “An experimental study in determining the local heat transfer coefficients for the plate finned-tube heat exchangers”, Int. J. Heat Mass Transfer, Vol.52, pp.3057-3066, 2009.
[15]L.A.O. Rocha, F.E.M. Saboya, J.V.C. Vargas, “A comparative study of elliptical and circular sections in one- and two-row tubes and plate fin heat exchangers”, Int. J. Heat and Fluid Flow, Vol.18, pp.247-252, 1997.
[16]S.M. Saboya, F.E.M. Saboya, “Experiments on elliptic sections in one- and two-row arrangements of plate fin and tube heat exchangers”, Experimental Thermal and Fluid Science, Vol.24, pp.67-75, 2001.
[17]R.S. Matos, J.V.C. Vargas, T.A. Laursen, A. Bejan, “Optimally staggered finned circular and elliptic tubes in forced convection”, Int. J. Heat Mass Transfer, Vol.47, pp.1347–1359, 2004.
[18]C.W. Lu, J. M. Huang, W.C. Nien, C.C. Wang, “A numerical investigation of the geometric effects on the performance of plate finned-tube heat exchanger”, Energy. C. M., Vol.52, pp.1638–1643, 2011.
[19]J.Y. Kim, T.H. Song, “Effect of tube alignment on the heat/mass transfer from a plate fin and two-tube assembly: naphthalene sublimation results”, Int. J. Heat Mass Transfer, Vol.46, pp.3051–3059, 2003.
[20]Y.Q. Wang, L.A. Penner, S.J. Ormiston, “Analysis of laminar forced convection of air for crossflow in banks of staggered tubes”, Numerical Heat Transfer A, Vol.38, pp.819–845, 2000.
[21]Y.H. Kim, Y.C. Kim, “Heat transfer characteristics of flat plate finned-tube heat exchangers with large fin pitch”, Int. J. Refrigeration, Vol.28, pp.851–858, 2005.
[22]L.H. Tang, M. Zeng, Q.W. Wang, “Experimental and numerical investigation on air-side performance of fin-and-tube heat exchangers with various fin patterns”, Experimental Thermal and Fluid Science, Vol.33, pp.818–827, 2009.
[23]M.S. Mon, U. Gross, “Numerical study of fin-spacing effects in annular-finned tube heat exchangers”, Int. J. Heat Mass transfer, Vol.47, pp.1953-1964, 2004.
[24]G. Xie, B. Sunden, Q. Wang, L. Tang, “Performance predictions of laminar and turbulent heat transfer and fluid flow of heat exchangers having large tube-diameter and large tube-row by artificial neural networks”, Int. J Heat Mass Transfer, Vol.52, pp.2484–2497, 2009.
[25]R. Borrajo-Peláez, J. Ortega-CasanoVa, J.M. Cejudo-López, “A three-dimensional numerical study and comparison between the air side model and the air/water side model of a plain fin-and-tube heat exchanger”, Appl. Therm. Eng., Vol.30, pp.1608–1615, 2010.
[26]W.M. Rohsenow, J.P. Hartnett, Y.I. Cho, “Handbook of Heat TRANSFER”, 3rd ed., McGraw-Hill, New York, NY, 1988.
[27]A. Bejan, “Heat Transfer”, John Wiley & Sons, New York, pp.53-62, 1993.
[28]B.E. Launder, D.B. Spalding, “Mathematical Method of Turbulence”, Academic, London, pp.3-51, 1972.
[29]V. Yakhot, S.A. Orszag, “Renormalization group analysis of turbulence”, Journal of Scientific Computing, Vol.1, pp.3-51, 1986.
[30]W. Elenbaas, “Heat dissipation of parallel plates by free convection”, Physica, Vol.9, pp.1-28, 1942.
[31]N. Kayansayan, “Thermal characteristics of fin-and-tube heat exchanger cooled by natural convection”, Exp. Therm. Fluid Sci. Vol.7, pp.177-188,1993.
[32]T. Tsubouchi, H. Masuda, “Natural Convection Heat Transfer From Horizontal Cylinders With Circular Fins”, Proc.6th Int. Heat Transfer Conf., Elsevier Publishing, Amsterdam , paper NC 1.10,1970.
[33]A. Kumar, J.B. Joshi, A.K. Nayak, P.K. Vijayan, “3D CFD simulation of air cooled condenser-I: natural convection over a circular cylinder”, Int. J. Heat Mass Transfer, Vol.78, pp.1265-1283, 2014.
[34]B. Sahin, A. Akkoca, N.A. Ozturk, H. Akilli, “Investigations of flow characteristics in a plate fin and tube heat exchanger model composed of single cylinder”, Int. J. Heat and Fluid Flow, Vol.27, pp.522-530, 2006.