| 研究生: |
黃嘉緯 Huang, Chia-Wei |
|---|---|
| 論文名稱: |
利用溶膠-凝膠法以3-(三羥基矽基)-丙烷磺酸功能性單體製備多巴胺模印高分子之研究 Dopamine Imprinted Polymer Prepared by Using 3-(trihydroxysilyl)-1-propanesulfonic acid Function Monomer with Sol-Gel Process |
| 指導教授: |
楊明長
Yang, Ming-Chang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 109 |
| 中文關鍵詞: | 分子模印高分子 、多巴胺 、溶膠凝膠法 、3-(三羥基矽基)-丙烷磺酸 、苯基三甲氧基矽烷 |
| 外文關鍵詞: | molecular imprinted polymer, dopamine, sol-gel, 3-(trihydroxysilyl)-1-propanesulfonic acid, phenyltrimothoxysilane |
| 相關次數: | 點閱:139 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以四乙氧基矽烷為鎖鏈劑,3-(三羥基矽基)-丙烷磺酸與苯基三甲氧基矽烷為功能性單體,異丙醇與四氫呋喃為溶劑,多巴胺為模版分子,在酸性催化條件下以溶膠-凝膠法製備多巴胺模印高分子。並以液相層析儀偵測吸附液濃度變化,據以之計算模印係數與選擇率,利用BET量測比表面積以幫助了解分子模印高分子結構。
本研究的旨在尋找具高模印係數與選擇性的多巴胺模印高分子,並探討反應物組成對多巴胺模印高分子效能之影響。
實驗中探討單步驟與雙步驟流程。在單步驟流程中使用傳統酸催化反應,探討功能性單體種類、功能性單體添加量、溶劑種類、水中鹽酸濃度、混掺甲基三乙基矽氧烷與聚二甲基矽氧烷等條件對於模印係數與比表面積的影響。結果顯示3-(三羥基矽基)-丙烷磺酸相較於其他文獻上使用的單體(胺丙基三甲氧基矽烷(3.89 μmol/g)、苯基三甲氧基矽烷(0.972 μmol/g)對多巴胺有較高的吸附量(61.3 μmol/g),且二氧化矽上未反應羥基貢獻的吸附量(1.01 μmol/g)遠低於3-(三羥基矽基)-丙烷磺酸,對多巴胺的辨識影響小。另外,當水中鹽酸濃度過高會造成特異性吸附降低(-log[HCl(aq)]由2改為0時,模印係數由1.019降為0.760)。以甲基三乙基矽氧烷或聚二甲基矽氧烷混掺,皆會影響模印高分子比表面積,增加疏水性,並減少對多巴胺的吸附量。
雙步驟流程中先利用氨中和3-(三羥基矽基)-丙烷磺酸,再進行溶膠-凝膠反應製備多巴胺模印高分子,可以得到較低的非特異性吸附與較高的模印係數,且對帶電荷、極性或與多巴胺有較大分子結構差異之待測物,具有良好的辨識能力,而對於具有胺基且與多巴胺結構相近的分子,則對胺碁上的基團具有辨識效果。在雙步驟流程中添加苯基三甲氧基矽烷與聚二甲基矽氧烷時,在以腎上腺素做競爭物下,多巴胺模印高分子對多巴胺的選擇率由1.28提高到2.55,且對與多巴胺結構相近的競爭物,有較高的模印係數與選擇率。
在雙步驟流程中,以水、異丙醇、四氫呋喃、四乙氧基矽烷、3-(三羥基矽基)-丙烷磺酸、苯基三甲氧基矽烷、多巴胺的莫耳比為160:26:1.96:40:2:8:1,水的pH為2、氨/3-(三羥基矽基)-丙烷磺酸莫耳比為0.75作為標準條件,對單一組成用量改變作探討,可得溶劑量為基準值4倍時,在以腎上腺素做競爭物下,多巴胺模印高分子對多巴胺有最大選擇率20.791;當水對四乙氧基矽烷莫耳比為4時,在以腎上腺素做競爭物下,多巴胺模印高分子對多巴胺有最大選擇率8.557;水中鹽酸濃度-log([HCl(aq)])為2時,在以腎上腺素做競爭物下,多巴胺模印高分子對多巴胺有最大選擇率8.557;固定氨與3-(三羥基矽基)-丙烷磺酸的莫耳比固定為0.75下當3-(三羥基矽基)-丙烷磺酸對多巴胺莫耳比為1時,在以腎上腺素做競爭物下,多巴胺模印高分子對多巴胺有最大選擇率13.121;固定氨與3-(三羥基矽基)-丙烷磺酸的差值為多巴胺的0.5倍下當3-(三羥基矽基)-丙烷磺酸對多巴胺莫耳比為1時,在以腎上腺素做競爭物下,多巴胺模印高分子對多巴胺有最大選擇率9.116;當苯基三甲氧基矽烷對多巴胺莫耳比為8時,在以腎上腺素做競爭物下,多巴胺模印高分子對多巴胺有最大選擇率8.557;當四乙氧基矽烷對多巴胺莫耳比為60時,在以腎上腺素做競爭物下,多巴胺模印高分子對多巴胺有最大選擇率16.689;當多巴胺在1倍基準值用量時,在以腎上腺素做競爭物下,多巴胺模印高分子對多巴胺有最大選擇率8.557。
實驗數據顯示本研究得到的多巴胺模印高分子,是以3-(三羥基矽基)-丙烷磺酸提供離子鍵結做吸附作用力,而苯基三甲氧基矽烷提供苯環的平面結構更可作為空間障礙,並與對多巴胺上的苯環做選擇性吸附,使共聚合製備得到的多巴胺模印高分子同時具備高吸附量與高選擇性。
In this study, crosslinker tetraethylorthosilicate (TEOS), functional monomers 3-(trihydroxysilyl)-1-propanesulfonic acid (THS-PSA) and phenyltrimothoxysilane (PTMOS), solvent of iso-propanol and THF were used to produce dopamine imprinted polymer by sol-gel process with acid catalyst. High performance liquid chromatography (HPLC) was used to detect concentration change during adsorption to calculate the imprinting factor and selectivity. Surface area obtained by BET was used to understand the structure of MIP. The purpose of this study is to produce dopamine imprinted polymer with high imprinting factor and selectivity, and to investigate the effect of reactant composition on the performance.
The experiments were carried out in single-step and two-step process. In the single-step process, a conventional method was applied to produce MIP by using an acid catalyst. This report show that the reaction condition, such as kind of functional monomer, amount of functional monomer, kind of solvent, concentration of hydrochloric acid, and addition of methyltrimethoxysilane (MTMOS) and polydimethylsiloxane (PDMS) affect the imprinting factor and surface area of MIP. According to the experiments results, using THS-PSA as function monomer give higher adsorption amount (61.3 μmol/g), compare with 3-Aminopropyltrimethoxysilane (3.89 μmol/g) and PTMOS (0.972 μmol/g), and the contribution to adsorption amount of dopamine by hydroxy group of silicate (1.01 μmol/g) was too low to interfere recognition ability by THS-PSA. When hydrochloric acid concentration increased from 10-2M to 1M, the imprinting factor changed from 1.019 to 0.760. Addition of MTMOS or PDMS into process increased hydrophobicity and decreased adsorption amount of dopamine.
In the two-step process, amonnia was used to neutralize THS-PSA and gave a less non-specific adsorption and higher imprinting factor. The produced MIP also had good recognition ability for polar molecule, ionic molecule, and molecule with structure much different from dopamine. The MIP can recognized the molecule whose chemical structure was similar with dopamine with an amine group. When PDMS and PTMOS were added in the two-step process, higher selectivity, dopamine to epinephrine increased from 1.28 to 2.55. For other interference molecules, the MIP had high recognition ability to dopamine.
In two-step process, a standard codition was chosen as water: iso-propanol: THF: TEOS: THS-PSA: PTMOS: dopamine of 160: 26: 1.96: 40: 2: 8:1, and pH of water of 2, the molar ratio of amonnia to THS-PSA of 0.75. Base on this standard condition, the reagent composition effect on MIP performance was studied, with 4 times of solvent amount a highest selectivity of 20.791 was obtained. A highest selectivity of 8.557 was obtained with molar ratio of water/TEOS of 4. A highest selectivity of 8.557 was obtained with -log([HCl(aq)]) of 2. The optimum molar ratio of THS-PSA/dopamine was 1, molar ratio of PTMOS/dopamine was 8, and dopamine amount was the standard weight.
The recognition mechanism of this MIP come from two parts, first was the high affinity of THS-PSA by ionic bonding, the second was the spatial barrier and π-π interaction of PTMOS by phenyl group. These two factors make MIP have both high adsorption and high selectivity.
[1] B. Sellergren, Molecularly Imprinted Polymers, Elsevier Science, Amsterdam, Netherlands (2001).
[2] H. Andersson, K, Haupt, C. Allender, C. Alexander, M. Whotcombe, S. Piletsky, B. Sellergren, I. Nicholls, Fundamentals of Molecular Imprinting, Notes of MIP 2002 Pre-Conference Course, Second International Workshop on Molecularly Imprinted Polymers, La Grande Motte, France Sept. 16-19th (2002).
[3] B. Sellergren, Molecularly Imprinted Polymers , Man-made mimics of antibodies and their applications in analytical chemistry, Vol. 23, Elsevier, New York (2001).
[4] R. Arshady, K. Mosbach, “Synthesis of substrate-selective polymers by host-guest polymerization., Makromol. Chem., 182, 687-692 (1981).
[5] O. Norrlow, M. Glad, K. Mosbach, “Acrylic polymer preparations containing recognition sites obtained by imprinting with substrates”, J. Chromatogr., 299, 29-41 (1984).
[6] B. Sellergren, B.Ekberg, and K. Mosbach, “Molecular imprinting of amino acid dertivatives in macroporous polymers”, J. Chromatogr., 347, 1-10 (1985).
[7] P . A. G. Comack, K. Mosbach, React. Funct. Polym., 41, 115 (1999).
[8] L. Schweit, L. I. Andersson, "Molecular imprint-based stationary phases for capillary electrochromatography", J. Chromatogr., A, 817, 5-13 (1998).
[9] D. Kriz, C. B. Kriz, L. I. Andersson and K. Mosbach, “Thin-layer chromatography based on the molecular imprinting technique”, Anal. Chem., 66, 2636-2639 (1994).
[10] A. Zander, P. Findlay, T. Renner and B. Sellergren, “Analysis of nicotine and its oxidation products in nicotine chewing gum by a molecularly imprinted solid-phase extraction”, Anal. Chem., 70, 3304-3314 (1998).
[11] B. Sellergren, “Direct drug determination by selective sample enrichment on an imprinted polymer”, Anal. Chem., 66, 1578 (1994).
[12] I. Amato, Science., 256, 964 (1992)
[13] K. Haupt, A. G. Mayes and K. Mosbach, “Herbicide assay using an imprinted polymer-based system analogous to competitive fluoroimmunoassays”, Anal. Chem., 70, 3936-3939 (1998).
[14] M. E. Davis, A. Katz and W. R. Ahmad, “Rational Catalyst Design via Imprinted Nanostructured Materials”, Chem. Mater., 8, 1820-1839 (1996).
[15] L. I. Andersson, C. F. Mandenius and K. Mosbach, “Studies on guest selective molecular recognition on an octadecyl silylated silicon surface using ellipsometry”, Tetrahedron Lett., 29, 5437-5440 (1988).
[16] S. A. Piletsky, Y. P. Parhometz, N. V. Lavryk, T. L. Panastuk and A. V. El’skaya, “Sensors for low-weight organic molecules based on molecular imprinting technique”, Sens. Actuators, B, 18-19, 629-631 (1994).
[17] D. Kriz and K. Mosbach, “Competitive Amperometric Morphine Sensor Based on a Agarose Immunobilised Molecularly Imprinted Polymer”, Anal. Chim. Acta, 300, 71-75 (1995).
[18] D. Kriz, O. Ramström, A. Svensson and K. Mosbach, “Introducing biomimetic sensors based on molecularly imprinted polymers as recognition elements”, Anal. Chem., 67, 2142-2144 (1995).
[19] M. Lahav, A. B. Kharitonov, O. Katz, T. Kunitake, I. Willner, “Tailored Chemosensors for Chloroaromatic Acids Using Molecular Imprinted TiO2 Thin Films on Ion-Sensitive Field-Effect Transistors”, Anal.Chem., 73, 720 (2001).
[20] Y. Kanekiyo, K. Inoue, Y. Ono, M. Sano, S. Shinkai, D. N. Reinhoudt, “Molecular-imprinting of AMP Utilizing the Polyion Complex Formation Process as Detected by a QCM System”, J. Chem. Soc., Perkin Trans. 2, 2719 (1999).
[21] 陳慧英,“溶膠凝膠法在薄膜製備上之應用”,化工技術,無機薄膜之製備與應用專輯, 11 月號,第80 期,(1999)。
[22] D. Avnir, D. Levy, R. Reisfeld, J. Phys. Chem., 88, 5965 (1984).
[23] G. Philipp, H. Schmidt, ”New Materials for Contact Lenses Prepared From Si- and Ti-Alkoxides by the Sol-Gel process”, J. Non-Cryst. Solid, 63, 283 (1984).
[24] G. L. Wilkes, B. Orler, H. Huang, Polym. Prep., 26, 300 (1985).
[25] S. Braun, S. Rappoport, R. Zusman, O. Anvir, M. Ottoolenghi, Mater. Lett., 10, 1 (1990).
[26] F. H. Previc, “Dopamine and the origins of human intelligence”, Brain and cognition, 41, 299-350 (1999).
[27] G.L. Zubay, W.W. Parson, and D.E. Vance, Principles of Biochemistry, Wm. C. Brown Publishers, Dubuque, Iowa. (1995).
[28] C. Refshauge, P.T. Kissinger, R. Dreiling, L. Blank, R. Freeman, R.N. Adams, “New high-performance liquid chromatographic analysis of brain catecholamines”, Life Sci. 14, 311–322 (1974).
[29] S. Sasa, C. LeRoy Blank, “Determination of serotonin and dopamine in mouse brain tissue by high performance liquid chromatography with electrochemical detection”, Anal. Chem. 49, 354–359 (1977).
[30] P.T. Kissinger, L.J. Felice, R.M. Riggin, L.A. Pachla, D.C. Wenke,“Electrochemical detection of selected organic components in the eluate from high-performance liquid-chromatography.”, Clin. Chem. 20 (8), 992–997 (1974).
[31] Adarsh M. Kumar, J. B Fernandez, Louis Gonzalez, Mahendra Kumar, J. Liq. Chromatogr. Relat. Technol., 29, 6, 777- 799 (2006).
[32] D. Navas, Sánchez, F. García, Aguilar, Alfonso, Bracho, Visitación and Algarra, Manuel, J. Liq. Chromatogr. Relat. Technol., 32, 6, 849 -859 (2009).
[33] R. Luz, F.Z. Damos, A. Oliveira, J. Beck, L.T. Kubota, “Development of a sensor based on tetracyanoethylenide (LiTCNE)/poly-L-lysine (FILL) for dopamine determination”, Electrochim. Acta 50 2675–2683
(2005).
[34] Jianping Li, Jun Zhao, Xiaoping Wei, “A sensitive and selective sensor for dopamine determination based on a molecularly imprinted electropolymer of o-aminophenol”, Sens. Actuators, B, 140, 2, 663-669 (2009).
[35] P.Y. Chen, P.C. Nien, K.C. Ho, “Highly Selective Dopamine Sensor based on an Imprinted SAM/Mediator Gold Electrode”, Procedia Chemistry Proceedings of the Eurosensors XXIII conference, 1, 1, 285-288 (2009).
[36] Xianwen Kan, Yao Zhao, Zhirong Geng, Zhilin Wang, and Jun-Jie Zhu, “Composites of Multiwalled Carbon Nanotubes and Molecularly Imprinted Polymers for Dopamine Recognition”, J. Phys. Chem. C , 112, 13, 4849-4854 (2008).
[37] R. Suedee, V. Seechamnanturakit, B. Canyuk, C. Ovatlarnporn, G.. P. Martin, “Temperature sensitive dopamine-imprinted (N,N-methylene-bis-acrylamide cross-linked) polymer and its potential application to the selective extraction of adrenergic drugs from urine”, J. Chromatogr., A, 1114, 2, 239-249 (2006).
[38] Wilney de Jesus Rodrigues Santos, Phabyanno Rodrigues Lima, Cesar Ricardo Texixerira Tarley, “Synthesis and application of a peroxidase-like molecularly imprinted polymer based on hemin for selective determination of serotonin in blood serum”, Anal. Chim. Acta, 631, 2, 170-176 (2009).
[39] T. Toshifumi, M. Nobuo, M. Hideshi, M. Takashi, and S. Hideyuki, “Dopamine selective molecularly imprinted polymers via post-imprinting modification “, Org.Biomol. Chem., 4, 565-568 (2006).
[40] Tzong-Rong Ling, Yau Zen Syu, Yau-Ching Tsai, Tse-Chuan Chou, Chung-Chiun Liu, “Size-selective recognition of catecholoamines by molecular imprinting on silica-alumina gel”, Biosens. Bioelectron., 21, 6, 901-907 (2005).
[41] N. F. Atta, A. M. Abdel-Mageed, “Smart electrochemical sensor for some neurotransmitters using imprinted sol– gel films”, Talanta, 80, 2, 511-518 (2009).
[42] J. H. G. Steinke, I. R. Dunkin, and D. C. Sherrington, “Molecularly Imprinted Anisotropic Polymer Monoliths”, Macromolecules, 29, 407-415 (1996).
[43] S. Mudd, “A hypothetical mechanism of antibody formation”, J. Immunol. , 23, 423 (1932).
[44] L. Pauling, “A theory of the structure and process of formation of antibodies”, J. Am. Chem. Soc., 62, 2643-2657 (1940).
[45] G. Wulff, “Molecular imprinting in cross-linked Materials with the aid of molecular templates - a way towards artificial antibodies”, Angew. Chem., Int. Ed. Engl., 34, 1812-1832 (1995).
[46] K. Mosbach and O. Ramström, “The emerging technique of molecular imprinting and its future impact on biotechnology”, Bio/Technology, 14, 163-170 (1996).
[47] J. U. Klein, M. J. Whitcombe, F. Mulholland, E. N. Vulfson, “Template-Mediated Synthesis of a Polymeric Receptor Specific to Amino Acid Sequences”, Angew.Chem., Int. Ed. Engl., 38, 2057 (1999).
[48] N. Pérez-Moral, A. G. Mayes, “Comparative study of imprinted polymer particles prepared by different polymerisation methods”, Anal. Chem. Acta., 504, 15 (2004).
[49] Y. Zhang, A. Tong, L. Li, “Synthesis of molecularly imprinted polymer with 7-chloroethyl-theophylline-immobilized silica gel as template and its molecular recognition function”, Spectrochim. Acta, Part A , 60, 241 (2004).
[50] S. Srebnik, O. Lev, J. Sol-Gel Sci. Technol., 26, 107 (2003).
[51] A. L. Graham, C. A. Carlson, P. L. Edmiston, “Development and Characterization of Molecularly Imprinted Sol-Gel Materials for the Selected Detection of DDT”, Anal. Chem, 74, 458-456 (2002).
[52] M. J. Whitcombe, and E. N. Vulfson, “Imprinted polymer,” Adv. Mater., 13, 467-477 (2001).
[53] Andrew J. Goshe, Ian M. Steele, Christopher Ceccarelli†, Arnold L. Rheingold†, and B. Bosnich, “Supramolecular Chemistry And Self-assembly Special Feature: Supramolecular recognition: On the kinetic lability of thermodynamically stable host–guest association complexes”, PNAS, 99, 4823-4829 (2002).
[54] R. W. Jones, “Fundamental principles of sol-gel technology”, The institute of metals(1989)
[55] S. Sakka and K. Kamiya, “Glasses from metal alcoholates”, J. Non-Cryst. Solids, 42, 403 (1980).
[56] K. Kamiya, K. Tanimoto and T. Yoko, J. Mater. “Preparation of TiO2 Fibers by Hydrolysis and Polycondensation of Ti(O-i-C3H7)4”, Sci. Lett., 5, 402 (1986).
[57] J. Livage, in”Sol-Gel Science and Technology”, eds. by M. A. Aegeter, M. Jr. Jafelicci, D.F.Souza and E. D. Zanotto, World Scientific, Singapore 103 (1989).
[58] R. K. Iler, The Chemistry of silica (Wiley, New York, 1979).
[59] R. Tamaki, and Y. Chujo, Chem. Mater., 11, 1719 (1999).
[60] X.Jiang, W. Tian, C. Zhao, H. Zhang, and M. Liu, “A novel sol-gel-material prepared by a surface imprinting technique for the selective solid-phase extraction of bisphenol A”, Talanta 72, 119 (2007).
[61] R. Gupta and A. Kumar, “Molecular imprinting in sol-gel matrix”, Biotechnol. Adv. 26, 533 (2008).
[62] Z. Zhang, Y. Long, L. Nie, and S. Yao, Biosens. Bioelectron. 21, 1244 (2006).
[63] Z. Xu, S. Chen, W. Huang, G. Fang, P. Hua, S. Wang, “Study on an on-line molecularly imprinted solid-phase extraction coupled to high-performance liquid chromatography for separation and determination of trace estrone in environment”, Anal. Bioanal. Chem., 393, 1273-1279 (2009).
[64] A. Ferenandez-Gonzalez, R. Badialaino, M. E. Diaz- Garcia, L. Guardia, A. Viale, “Assessment of molecularly imprinted sol-gel materials for selective room temperature phosphorescence recognition of
nafcillin”, J. Chromatogr. B, 804, 247-254 (2004).
[65] S. Fireman-Shoresh, D. Avnir and S. Marx, “General Method for Chiral Imprinting of Sol-Gel ThinFilms Exhibiting Enantioselectivity”, Chem. Mater. 15, 3607-3617 (2003).
[66] Sharon Mark, Amalya Zaltsman, Iva Turyan, “Parathion sensor based on molecularly imprinted sol-gel films”, Anal. Chem., 76, 120-126 (2004).
[67] D. M. Han, G. Z. Fang, X. P. Yan, “Preparation and evaluation of a molecularly imprinted sol-gel material for on-line solid-phase extraction coupled with HPLC for the determination of trace pentachlorophenol in water samples”, J. Chromatogr. A, 1100, 131-136 (2005).
[68] C.I Lin, A. K. Joseph, C. K. Chang, Y. C. Wang, Y. D. Lee, “Synthesis of molecular imprinted organic-inorganic hybrid polymer binding caffeine”, Anal. Chim. Acta, 481, 175-180 (2003).
[69] Y.-S. Chang, T.-H. Ko, T.-J. Hsu, and M.-J. Syu, “Synthesis of an Imprinted Hybrid Organic-Inorganic Polymeric Sol-Gel Matrix Toward the Specific Binding and Isotherm Kinetics Investigation of Creatinine”, Anal. Chem., 81, 2098-2105 (2009).
[70] C. Li, C. Wang, B. Guan, Y. Zhang and S. Hu, “Electrochemical sensor for the determination of parathion based on p-tert-butylcalix[6]arene-1,4-crown-4 sol–gel film and its characterization by electrochemical methods”, Sens. Actuators, B, 107, 411-417 (2005).
[71] R. Makote, M. M. Collinson, “Template Recognition in Inorganic-organic Hybrid Films Pre-pared by the sol-gel Process”, Chem. Mater., 10, 2440-2445 (1998).
[72] Sharon Fireman-Shoresh, Sharon Mark, David Avnir, “Enantioselective Sol-Gel Materials Obtained by Either Doping or Imprinting with a Chiral Surfactant”, Adv. Mater. , 19, 2145-2150 (2007).
[73] Sharon Fireman-Shoresh, Iva Turyan, David Avnir, Sharon Mark, “Chiral Electrochemical Recognition by Very Thin Molecularly Imprinted Sol−Gel Films”, Langmuir, 21, 7842-7847 (2005).
[74] C.-W. Hsu, M.-C. Yang, “The Fabrication of Epinephrine MIP by Sol-Gel Method”, Sens. Actuators, B, 134, 680-686 (2008).
[75] A. Olwill et al. , Biosens. Bioelectron., 20, 1045-1050 (2004).
[76] C.-W. Hsu, M.-C. Yang, “The Enhancement of Imprinting Effect in Cholesterol Imprinted Microporous Silica”, J. Non-Cryst. Solids, 354, 4037-4042 (2008).
[77] S. Marx, A. Zaltsman, Intern. “Molecular Imprinting of Sol Gel Polymers for the Detection of Paraoxon in Water”, J. Environ. Anal. Chem. , 83, 7, 671-680, (2003).
[78] Na Gao, Zhiai Xu, Fuan Wang, Shaojun Dong, “Sensitive Biomimetic Sensor Based on Molecular Imprinting at Functionalized Indium Tin Oxide Electrodes”, Electroanalysis, 19, 16, 1655-1660 (2007).
[79] X. Jiang, W. Tian, C. Zhao, H. Zhang and M. Liu., “A novel sol–gel-material prepared by a surface imprinting technique for the selective solid-phase extraction of bisphenol A” , Talanta, 72, 119-125 (2007).
[80] R. G. da costa silva, F. Augusto, “Sol–gel molecular imprinted ormosil for solid-phase extraction of methylxanthines”, J. Chromatogr. A, 1114, 216-223 (2006).
[81] T.-R. Ling et al. , “Size-selective recognition of catecholoamines by molecular imprinting on silica-alumina gel”, Biosens. Bioelectron., 21, 901-907 (2005).
[82] W. Cummins et al. , Anal. Chim. Acta, 542, 52-60 (2005).
[83] M. K. Li, N. Y. Lei, C. Gong, Y. Yu , K. H. Lam, M. H. Lam, H. Yu, P. K. Lam., “An organically modified silicate molecularly imprinted solid-phase microextraction device for the determination of polybrominated diphenyl ethers”, Anal. Chim. Acta, 633, 197–203 (2009).
[84] L. Guardia et al., Biosens. Bioelectron., 21, 1822-1829 (2006).
[85] S. Marx, Z. Liron, Chem. Mater., 13, 3624-3630 (2001).
[86] 鍾佳芸,溶膠-凝膠法製備分子拓印高分子,國立中央大學,化學工程與材料工程研究所,碩士論文,2004
[87] K.Y. Leea, Y.H. Leea, H.M. Kima, M.Y. Koha, S.H. Ahna and H.K. Lee, “Synthetic model of a bioactive
functionally graded nano-hybrid in silica– polydimethylsiloxanesystem”, Current Applied Physics, 5, 5, 453-457 (2005).
[88] L. Guardia, “Role of surface adsorption and porosity features in the molecular recognition ability of imprinted sol–gels”, Biosens. Bioelectron., 23, 1101-1108(2008).
[89] R. Makote and M. M. Collinson, Chem. Mater. 10 ,2440 (1998).
[90] 朱雅淳,前列腺素在下視丘結節漏斗多巴胺神經元活性及泌乳素分泌的日變週期中所扮演的角色,國立陽明大學,臨床醫學研究所,博士論文,2001。
[91] 何敏夫,臨床生化學,合記圖書出版社,436,1984。
[92] L. Lin et al., Anal. Bioanal. Chem., 384, 1308-1313 (2006).