簡易檢索 / 詳目顯示

研究生: 周吟柏
Jou, Yin-Bo
論文名稱: 探討凝血酶調節素在蝕骨細胞新生作用中的角色
The role of thrombomodulin in osteoclastogenesis
指導教授: 吳華林
Wu, Hua-Lin
學位類別: 碩士
Master
系所名稱: 醫學院 - 生物化學暨分子生物學研究所
Department of Biochemistry and Molecular Biology
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 53
中文關鍵詞: 蝕骨細胞新生作用凝血酶調節素發炎
外文關鍵詞: osteoclastogenesis, thrombomodulin, inflammation
相關次數: 點閱:121下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 凝血酶調節素(TM)為細胞膜表面的醣蛋白,高度表現在內皮細胞及其他種類的細胞,如角質形成細胞、成骨細胞及髓系單核球細胞。它最先是被發現具有抗凝血的角色。最近的研究指出它有多重的功能如血管生成、細胞生長及補體活化。TM在單核球/巨噬細胞上和發炎有關,且其表現在生理或病理的情況下會改變。在蝕骨細胞新生作用中,從骨髓或血管系統而來的單核球/巨嗜細胞會互相融合形成多核的細胞,最後參與骨質再吸收。到目前,巨噬細胞上的TM在蝕骨細胞新生作用中的角色尚未被探討。
    使用人類周邊血液單核球(PBMCs)及老鼠骨髓得來的巨噬細胞(BMMs)做為前驅細胞。利用髓系專一性TM剃除老鼠及缺乏TM之N端功能區老鼠做為研究模式。使用巨噬細胞生長因子(M-CSF)和核內細胞因子活化型B細胞κ輕鏈促進物之受體活化器(RANKL)誘導蝕骨細胞形成。
    結果顯示,TM的表現在蝕骨細胞新生作用中有減低的情形。在髓系專一性TM剃除老鼠中,缺乏TM會增加蝕骨細胞的形成。而在缺乏TM之N端功能區老鼠也有一致的現象,顯示在蝕骨細胞新生作用中,TM之N端功能區扮演一定程度的角色。而在處理RANKL後,髓系專一性剃除TM的老鼠BMMs會產生較多的促發炎因子高動性分群組1(HMGB1),則暗示TM可能透過干擾HMGB1在蝕骨細胞上的功能來調節蝕骨細胞新生作用。
    總結來說,TM的表現和蝕骨細胞的分化過程是負相關的。而由上述結果推測TM可能透過調節與與發炎反應有關的角色參與在蝕骨細胞新生作用中,因而對於骨質代謝疾病提供一個新的方向與應用。

    Backgrounds:Thrombomodulin (TM), a glycoprotein on the cell surface, is highly expressed in endothelial cells and other numerous cell types such as keratinocyes, osteoblasts and myeloid mononuclear cells. It is first discovered as an anticoagulant factor, and recent studies demonstrate that it has multi-functions including angiogenesis, cell proliferation and complement activation. TM in monocytes/macrophages is associated with inflammation and the expression level is altered in physiological and pathological conditions. In osteoclastogenesis, monocytes /macrophages obtained from bone marrow or vascular-blood system can differentiate to osteoclasts by cell-cell fusion to form multinucleated cells, which are involved in bone resorption. Until now, the role of TM in macrophages in osteoclastogenesis has not been investigated.
    Materials and Methods:Osteoclast precursors were isolated from human peripheral blood mononuclear cells (PBMCs) and mouse bone marrow derived macrophages (BMMs). Myeloid-specific TM-deficent mice (LysMcre/TMflox/flox) and mice lacking lectin-like domain of TM (TMLeD/LeD) were used. The differentiation was induced by macrophage-stimulating factor (M-CSF) and receptor activator of nuclear factor kappa-light-chain-enhancer of activated B cells ligand (RANKL).
    Results:TM expression was decreased during osteoclastogenesis. Results of osteoclast formation from LyMCreTMflox/flox BMMs showed that TM deficiency caused enhancement of osteoclastogenesis. TMLeD/LeD mice BMMs also had higher activity of osteoclast formation, indicating that TM lectin-like domain plays a role in osteoclastogenesis. Finallly, the proinflammatory cytokine high mobility group box 1 (HMGB1) production in LysMCreTMflox/flox BMMs was much more than TMflox/flox group after RANKL treatment, which suggested that TM regulates osteoclastogenesis by interfering the function of HMGB1 in osteoclasts.
    Conclusion:Taken together, we showed that TM expression was inversely correlated with the differentiation of osteoclasts. It was speculated that TM may participate in osteoclastogenesis through modulating inflammatory response and which may provide a novel application on osteometabolic diseases.

    Abstract in Chinese 1 Abstract in English 2 Contents 3 Figures Contents 4 Abbreviation 5 Instruments 6 Reagents and Chemicals 8 Introduction 12 Specific Aim 16 Materials and Methods 17 Results 1. TM expression is decreased in the differentiation process from macrophages to osteoclasts. 34 2. TM deficiency enhances osteoclasts formation in vitro. 34 3. Loss of TM lectin-like domain promotes the generation of osteoclasts. 35 4. HMGB1 production in LysMCreTMflox/flox BMMs is increased as compared with TMflox/flox group after RANKL treatment. 36 Conclusion 37 Discussion 38 Prospect 40 Figures 41 References 50

    1. William J. Boyle WSSDLL. Osteoclast differentiation and activation. Nature 2003; 423.
    2. Kelley TW. Macrophage Colony-stimulating Factor Promotes Cell Survival through Akt/Protein Kinase B. Journal of Biological Chemistry 1999; 274(37):26393-8.
    3. Bhatt NY, Kelley TW, Khramtsov VV, Wang Y, Lam GK, Clanton TL, Marsh CB. Macrophage-colony-stimulating factor-induced activation of extracellular-regulated kinase involves phosphatidylinositol 3-kinase and reactive oxygen species in human monocytes. Journal of immunology 2002; 169(11):6427-34.
    4. Lacey DL. Osteoprotegerin Ligand Is a Cytokine. Cell 1998; 93:165-76.
    5. Feng X. RANKing intracellular signaling in osteoclasts. IUBMB life 2005; 57(6):389-95.
    6. Bar-Shavit Z. The osteoclast: a multinucleated, hematopoietic-origin, bone-resorbing osteoimmune cell. Journal of cellular biochemistry 2007; 102(5):1130-9.
    7. Arron JR, Choi1 Y. Bone versus immune system. Nature 2000; 408:535-6.
    8. Graves D. Cytokines that promote periodontal tissue destruction. Journal of periodontology 2008; 79(8 Suppl):1585-91.
    9. Murthy MB. Osteoimmunology - Unleashing the concepts. Journal of Indian Society of Periodontology 2011; 15(3):190-8.
    10. Mundy GR. Osteoporosis and inflammation. Nutrition Reviews 2007; 65.
    11. Hardy R, Cooper MS. Bone loss in inflammatory disorders. The Journal of endocrinology 2009; 201(3):309-20.
    12. Takayanagi H. Osteoimmunology: shared mechanisms and crosstalk between the immune and bone systems. Nature reviews Immunology 2007; 7(4):292-304.
    13. Boffa MC, Karmochkine M. Thrombomodulin: an overview and potential implications in vascular disorders. Lupus 1998; 7 Suppl 2:S120-5.
    14. Fink LM, Eidt JF, Johnson K, et al. Thrombomodulin activity and localization. The International journal of developmental biology 1993; 37(1):221-6.
    15. Van de Wouwer M, Collen D, Conway EM. Thrombomodulin-protein C-EPCR system: integrated to regulate coagulation and inflammation. Arteriosclerosis, thrombosis, and vascular biology 2004; 24(8):1374-83.
    16. Conway EM, Van de Wouwer M, Pollefeyt S, et al. The Lectin-like Domain of Thrombomodulin Confers Protection from Neutrophil-mediated Tissue Damage by Suppressing Adhesion Molecule Expression via Nuclear Factor B and Mitogen-activated Protein Kinase Pathways. Journal of Experimental Medicine 2002; 196(5):565-77.
    17. Okamoto T, Tanigami H, Suzuki K, Shimaoka M. Thrombomodulin: a bifunctional modulator of inflammation and coagulation in sepsis. Critical care research and practice 2012; 2012:614545.
    18. WOUWER MVD. The lectin-like domain of thrombomodulin interferes with complement activation and protects against arthritis. Journal of Thrombosis and Haemostasis 2006; 4(8):1813-24.
    19. Conway EM. Thrombomodulin and its role in inflammation. Seminars in immunopathology 2012; 34(1):107-25.
    20. Esmon CT. Protein C anticoagulant system--anti-inflammatory effects. Seminars in immunopathology 2012; 34(1):127-32.
    21. Abeyama K, Stern DM, Ito Y, et al. The N-terminal domain of thrombomodulin sequesters high-mobility group-B1 protein, a novel antiinflammatory mechanism. Journal of Clinical Investigation 2005; 115(5):1267-74.
    22. Ito T, Kawahara K, Okamoto K, et al. Proteolytic cleavage of high mobility group box 1 protein by thrombin-thrombomodulin complexes. Arteriosclerosis, thrombosis, and vascular biology 2008; 28(10):1825-30.
    23. Kim HK. Lipopolysaccharide down-regulates the thrombomodul_2007_Blood Coagul Fibrinolysis. Blood Coagulation and Fibrinolysis 2007; 18:157-64.
    24. Lin FY, Tsai YT, Lee CY, et al. TNF-alpha-decreased thrombomodulin expression in monocytes is inhibited by propofol through regulation of tristetraprolin and human antigen R activities. Shock 2011; 36(3):279-88.
    25. Ma CY, Shi GY, Shi CS, Kao YC, Lin SW, Wu HL. Monocytic thrombomodulin triggers LPS- and gram-negative bacteria-induced inflammatory response. Journal of immunology 2012; 188(12):6328-37.
    26. McCachren SS, Diggs J, Weinberg JB, Dittman WA. Thrombomodulin expression by human blood monocytes and by human synovial tissue lining macrophages. Blood 1991; 78(12):3128-32.
    27. Weiler H, Isermann BH. Thrombomodulin. Journal of thrombosis and haemostasis : JTH 2003; 1(7):1515-24.
    28. Menschikowski M, Hagelgans A, Tiebel O, Vogel M, Eisenhofer G, Siegert G. Regulation of thrombomodulin expression in prostate cancer cells. Cancer letters 2012; 322(2):177-84.
    29. Van de Wouwer M, Conway EM. Novel functions of thrombomodulin in inflammation. Critical Care Medicine 2004; 32(Supplement):S254-S61.
    30. Shi C-S. Lectin-like domain of thrombomodulin binds to its specific ligand LewisY antigen and neutralizes lipopolysaccharide-induced inflammatory response. Blood 2008; 112.
    31. Charoonpatrapong K, Shah R, Robling AG, et al. HMGB1 expression and release by bone cells. Journal of cellular physiology 2006; 207(2):480-90.
    32. JIEPING YANG RS, ALEXANDER G. ROBLING, EVAN TEMPLETON, HUAN YANG, KEVIN J. TRACEY, and JOSEPH P. BIDWELL1. HMGB1 Is a Bone-Active Cytokine. J Cell Physiol 2008; 214:730-9.
    33. Moore KL, Esmon CT, Esmon NL. Tumor necrosis factor leads to the internalization and degradation of thrombomodulin from the surface of bovine aortic endothelial cells in culture. Blood 1989; 73(1):159-65.
    34. Lentz SR, Tsiang M, Sadler JE. Regulation of thrombomodulin by tumor necrosis factor-alpha: comparison of transcriptional and posttranscriptional mechanisms. Blood 1991; 77(3):542-50.
    35. Hsu YH, Chen WY, Chan CH, Wu CH, Sun ZJ, Chang MS. Anti-IL-20 monoclonal antibody inhibits the differentiation of osteoclasts and protects against osteoporotic bone loss. The Journal of experimental medicine 2011; 208(9):1849-61.
    36. Quinn JM, Sims NA, Saleh H, et al. IL-23 inhibits osteoclastogenesis indirectly through lymphocytes and is required for the maintenance of bone mass in mice. Journal of immunology 2008; 181(8):5720-9.
    37. Tarroni P, Villa I, Mrak E, Zolezzi F, Mattioli M, Gattuso C, Rubinacci A. Microarray analysis of 1,25(OH)(2)D(3) regulated gene expression in human primary osteoblasts. Journal of cellular biochemistry 2012; 113(2):640-9.
    38. Ohsawa M, Koyama T, Yamamoto K, Hirosawa S, Kamei S, Kamiyama R. 1 ,25-Dihydroxyvitamin D3 and Its Potent Synthetic Analogs Downregulate Tissue Factor and Upregulate Thrombomodulin Expression in Monocytic Cells, Counteracting the Effects of Tumor Necrosis Factor and Oxidized LDL. Circulation 2000; 102(23):2867-72.
    39. Sivagurunathan S, Pagel CN, Loh LH, Wijeyewickrema LC, Pike RN, Mackie EJ. Thrombin inhibits osteoclast differentiation through a non-proteolytic mechanism. Journal of molecular endocrinology 2013; 50(3):347-59.
    40. Sims GP, Rowe DC, Rietdijk ST, Herbst R, Coyle AJ. HMGB1 and RAGE in inflammation and cancer. Annual review of immunology 2010; 28:367-88.
    41. Hreggvidsdottir HS, Lundberg AM, Aveberger AC, Klevenvall L, Andersson U, Harris HE. High mobility group box protein 1 (HMGB1)-partner molecule complexes enhance cytokine production by signaling through the partner molecule receptor. Molecular medicine 2012; 18:224-30.
    42. Zhou Z, Han JY, Xi CX, Xie JX, Feng X, Wang CY, Mei L, Xiong WC. HMGB1 regulates RANKL-induced osteoclastogenesis in a manner dependent on RAGE. Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research 2008; 23(7):1084-96.
    43. Zhou Z, Immel D, Xi CX, et al. Regulation of osteoclast function and bone mass by RAGE. The Journal of experimental medicine 2006; 203(4):1067-80.

    下載圖示 校內:2018-08-28公開
    校外:2018-08-28公開
    QR CODE