| 研究生: |
黃雪婷 Huang, Hsueh-Ting |
|---|---|
| 論文名稱: |
與AI同策!區域醫院AI策略管理與決策支援之個案研究 Strategy with AI!Strategy Management and Decision Support with AI : A Case Study of Regional Hospital |
| 指導教授: |
李昇暾
Li, Sheng-Tun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 高階管理碩士在職專班(EMBA) Executive Master of Business Administration (EMBA) |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 46 |
| 中文關鍵詞: | 人工智慧 、醫療決策系統 、組織變革 |
| 外文關鍵詞: | Artificial Intelligence, Medical Decision-making Systems, Organizational strategy |
| 相關次數: | 點閱:201 下載:53 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著電腦運算技術的進加上大量醫療資訊電子化之後,首先,大數據資料分析變得熱門,這部分可利用Google Trends來搜尋相關的關鍵字,可發現大數據的從2014年開始變得熱門,而人工智慧的搜尋度則是從2016年開始增加,再加上辨識技術能力的突破,深度學習及醫療影像輔助診斷如雨後春筍般增加,因此,醫療生態將進入另一波的演化。
大數據的分析結果影響了決策行為,醫療體系該如何面對人工智慧的這波浪潮,醫療輔助診斷系統及影像辨別系統是否能取代臨床醫師的工作,醫院經營者面對這巨大的變革該有何作為,面對深度學習與人工智慧的進攻,臨床工作者及醫院經營者應該有何策略來面對它及接受他,亦或是利用它來制定政策呢?正是本研究欲討論的課題。
醫療診斷是醫療照護最關鍵的步驟,此步驟出錯將會造成病患的治療失當或延誤,這也是醫師在執行業務過程最重要的能力,而這個能力會受到經驗不同而有所差別,因此如何減少診斷上的錯誤,則是醫師執業過程最需注重的能力。
人工智慧有快速、精確、可重覆性及低成本的特性,越來越受到各領域的重視,醫學日新月異講求實證醫學,透過電腦運算技術及能力,利用之前的醫學資料庫為本進行學習,將其運用在疾病診斷上,可以幫助臨床醫師快速整合,創造新的資訊及預測數據,亦可讓疾病診斷的準確度提高並快速,將其節省下的時間轉為對病患的關懷,減少病患及家屬在生病過程的憂慮,改善醫病關係。
With the advancement of computer technology and the digitization of a large amount of medical information, big data analysis has become popular. We can use Google Trends to search for relevant keywords. It can be found that the search volume of big data begun in 2014 has become popular, and the popularity for artificial intelligence has increased from 2016. Breakthroughs in deep learning and medical imaging-assisted diagnosis coupled with recognition technology capabilities have sprung up, so the medical ecology will enter another series of revolutions.
The analysis results of big data influence decision-making process. How the medical system should face artificial intelligence? Whether the medical assistant diagnostic system and image recognition system can replace the work of clinicians, and hospital management what should be done? In the face of the offense of deep learning and artificial intelligence, what strategies should clinicians and hospital management can to face and accept it, or use it to formulate policies?
Medical diagnosis is the most critical step in medical care. Make a mistake in this step will cause improper or delayed treatment of patients. This is also the most important ability of physicians in medical practice. This ability will be different according to clinician’s experience. Reducing medical mistakes is the most important ability for physicians to practice.
Artificial intelligence has many characteristics including fast, accurate, repeatable, and low-cost. It is getting more and more attention in various fields. Computing technology and capabilities are used to learn from previous medical databases. Applying it to medical diagnosis can help clinicians quickly integrate and create new information and then predict. It can turn the saved time into care for patients and improves the doctor-patient relationship.
西文文獻
Acharya, U. R., Fujita, H., Oh, S. L., Hagiwara, Y., Tan, J. H., & Adam, M. (2017). Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals. Information Sciences, 415, 190-198.
Adlassnig, K. (2009). The clinical decision support consortium. Medical Informatics in a United and Healthy Europe: Proceedings of MIE, 26.
Bader, V., & Kaiser, S. (2019). Algorithmic decision-making? The user interface and its role for human involvement in decisions supported by artificial intelligence. Organization, 1350508419855714.
Bakator, M., & Radosav, D. (2018). Deep learning and medical diagnosis: A review of literature. Multimodal Technologies and Interaction, 2(3), 47.
Begoli, E., Bhattacharya, T., & Kusnezov, D. (2019). The need for uncertainty quantification in machine-assisted medical decision making. Nature Machine Intelligence, 1(1), 20-23.
Bhattacharya, A., Young, A., Wong, A., Stalling, S., Wei, M., & Hadley, D. (2017). Precision diagnosis of melanoma and other skin lesions from digital images. AMIA Summits on Translational Science Proceedings, 2017, 220.
Brous, P., Janssen, M., & Herder, P. (2019). Internet of Things adoption for reconfiguring decision-making processes in asset management. Business process management journal, 25(3), 495-511.
Creative Destruction Lab. (2016. Nov 24). Geoff Hinton: On Radiology (video file). Retrivevd from https://youtube/2HMPRXstSvQ.
Gale, W., Oakden-Rayner, L., Carneiro, G., Bradley, A. P., & Palmer, L. J. (2018). Producing radiologist-quality reports for interpretable artificial intelligence. arXiv preprint arXiv:1806.00340.
Gibson, E., Li, W., Sudre, C., Fidon, L., Shakir, D. I., Wang, G., Hu, Y. (2018). NiftyNet: a deep-learning platform for medical imaging. Computer methods and programs in biomedicine, 158, 113-122.
Goldhahn, J., Rampton, V., & Spinas, G. A. (2018). Could artificial intelligence make doctors obsolete? Bmj, 363, k4563.
Gulshan, V., Peng, L., Coram, M., Stumpe, M. C., Wu, D., Narayanaswamy, A., Cuadros, J. (2016). Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. Jama, 316(22), 2402-2410.
Head, H. T. (2018). Patient commentary: Stop hyping artificial intelligence—patients will always need human doctors. Bmj, 363.
Hinton, G. (2016). Can the brain do back-propagation. In Invited talk at Stanford University Colloquium on Computer Systems.
Hinton, G. E., Osindero, S., & Teh, Y.-W. (2006). A fast learning algorithm for deep belief nets. Neural computation, 18(7), 1527-1554.
Hinton, G., Vinyals, O., & Dean, J. (2015). Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531.
Ho, C. W. L., Soon, D., Caals, K., & Kapur, J. (2019). Governance of automated image analysis and artificial intelligence analytics in healthcare. Clinical radiology.
Hwang, D.-K., Hsu, C.-C., Chang, K.-J., Chao, D., Sun, C.-H., Jheng, Y.-C., Wang, M.-L. (2019). Artificial intelligence-based decision-making for age-related macular degeneration. Theranostics, 9(1), 232.
Jarrahi, M. H. (2018). Artificial intelligence and the future of work: human-AI symbiosis in organizational decision making. Business Horizons, 61(4), 577-586.
Jha, S., & Topol, E. J. (2016). Adapting to artificial intelligence: radiologists and pathologists as information specialists. Jama, 316(22), 2353-2354.
Kermany, D. S., Goldbaum, M., Cai, W., Valentim, C. C., Liang, H., Baxter, S. L., Yan, F. (2018). Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell, 172(5), 1122-1131. e1129.
Kiron, D., & Schrage, M. (2019). Strategy For and With AI. MIT Sloan Management Review, 60(4), 30-35.
Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. Paper presented at the Advances in neural information processing systems.
LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436.
Lee, H., Tajmir, S., Lee, J., Zissen, M., Yeshiwas, B. A., Alkasab, T. K., & Do, S. (2017). Fully automated deep learning system for bone age assessment. Journal of digital imaging, 30(4), 427-441.
Lee, J. H., & Kim, K. G. (2018). Applying deep learning in medical images: The case of bone age estimation. Healthcare informatics research, 24(1), 86-92.
Liew, C. (2018). The future of radiology augmented with artificial intelligence: a strategy for success. European journal of radiology, 102, 152-156.
Lin, Y.-W., Zhou, Y., Faghri, F., Shaw, M. J., & Campbell, R. H. (2019). Analysis and prediction of unplanned intensive care unit readmission using recurrent neural networks with long short-term memory. PloS one, 14(7).
Liu, Y., Gadepalli, K., Norouzi, M., Dahl, G. E., Kohlberger, T., Boyko, A., Corrado, G. S. (2017). Detecting cancer metastases on gigapixel pathology images. arXiv preprint arXiv:1703.02442.
Lundervold, A. S., & Lundervold, A. (2019). An overview of deep learning in medical imaging focusing on MRI. Zeitschrift für Medizinische Physik, 29(2), 102-127.
Miotto, R., Wang, F., Wang, S., Jiang, X., & Dudley, J. T. (2017). Deep learning for healthcare: review, opportunities and challenges. Briefings in bioinformatics, 19(6), 1236-1246.
Naylor, C. D. (2018). On the prospects for a (deep) learning health care system. Jama, 320(11), 1099-1100.
Pazireh, T., Rahimi, G., Irani, F. N., & Bohlouli, N. (2019). Model development for establishment of smart organizations: case study of the social security organization.
Pesapane, F., Codari, M., & Sardanelli, F. (2018). Artificial intelligence in medical imaging: threat or opportunity? Radiologists again at the forefront of innovation in medicine. European radiology experimental, 2(1), 35.
Quer, G., Muse, E. D., Nikzad, N., Topol, E. J., & Steinhubl, S. R. (2017). Augmenting diagnostic vision with AI. The lancet, 390(10091), 221.
Rajkomar, A., Oren, E., Chen, K., Dai, A. M., Hajaj, N., Hardt, M., Sun, M. (2018). Scalable and accurate deep learning with electronic health records. npj Digital Medicine, 1(1), 18.
Razzak, M. I., Naz, S., & Zaib, A. (2018). Deep learning for medical image processing: Overview, challenges and the future. In Classification in BioApps (pp. 323-350): Springer.
Rieke, J., Eitel, F., Weygandt, M., Haynes, J. D., & Ritter, K. (2018). Visualizing Convolutional Networks for MRI-Based Diagnosis of Alzheimer’s Disease. In Understanding and Interpreting Machine Learning in Medical Image Computing Applications (pp. 24-31). Springer, Cham.
Shah, S., Luo, X., Kanakasabai, S., Tuason, R., & Klopper, G. (2019). Neural networks for mining the associations between diseases and symptoms in clinical notes. Health information science and systems, 7(1), 1.
Shahid, N., Rappon, T., & Berta, W. (2019). Applications of artificial neural networks in health care organizational decision-making: A scoping review. PloS one, 14(2), e0212356.
Shrestha, Y. R., Ben-Menahem, S. M., & von Krogh, G. (2019). Organizational Decision-Making Structures in the Age of Artificial Intelligence. California Management Review, 61(4), 66-83.
Teramoto, A., Fujita, H., Yamamuro, O., & Tamaki, T. (2016). Automated detection of pulmonary nodules in PET/CT images: Ensemble false‐positive reduction using a convolutional neural network technique. Medical physics, 43(6Part1), 2821-2827.
Walsh, S., de Jong, E. E., van Timmeren, J. E., Ibrahim, A., Compter, I., Peerlings, J., Larue, R. T. (2019). Decision support systems in oncology. JCO clinical cancer informatics, 3, 1-9.
Wang, G., Li, W., Zuluaga, M. A., Pratt, R., Patel, P. A., Aertsen, M., Ourselin, S. (2018). Interactive medical image segmentation using deep learning with image-specific fine tuning. IEEE transactions on medical imaging, 37(7), 1562-1573.
Yoon, S. N., & Lee, D. (2019). Artificial intelligence and robots in healthcare: What are the success factors for technology-based service encounters? International Journal of Healthcare Management, 12(3), 218-225.
Zhu, Z., Albadawy, E., Saha, A., Zhang, J., Harowicz, M. R., & Mazurowski, M. A. (2019). Deep Learning for identifying radiogenomic associations in breast cancer. Computers in biology and medicine, 109, 85-90.
中文文獻
人工智慧在醫療領域的研究值得更多的專家們參與,健康世界月刊,107年6月號498期。
大和有話說, (2019),完整解析AI人工智慧:3大浪潮+3大技術+3大應用,大和有話說。
王文科,王智弘, (2014),教育研究法: 台灣五南圖書出版股份有限公司。
全國法規資料庫:個人資料保護法,取自https://law.moj.gov.tw。
全國法規資料庫:醫師法,取自https://law.moj.gov.tw。
全球人工智慧研究報告,資誠聯合會計師事務所,2019。
吳均庭,(2019),基於非監督式學習之無交疊 B-Spline 醫學影像配準,臺灣大學資訊工程學研究所學位論文(2019 年),1-26。
呂明心,林維真,& 岳修平,(2017),企業行動化之導入策略與組織績效影響研究,Journal of Library & Information Studies, 15(1)。
李宏毅,(2016),專題-人工智慧與 AlphaGo 什麼是深度學習,數理人文(10)。
李偉強專訪(2015),臺灣智慧醫療推展現況。
周延、孫英洲、與 郭萬祐。(2018),人工智慧:醫學影像診斷的新時代。台北市醫師公會會刊,62(8),30-35。
林昌賜、梁瑋倫。(2019)。智慧醫療的潛在應用與商業考量。電腦與通訊,(178),52-53。
林書弘、陳牧言。(2019)。人工智慧技術於智慧醫療之理論探討與實務應用。護理雜誌,66(2),7-13。
邱俊仁,(2018),應用深度學習建構乳癌診斷模式,國立台北科技大學工業工程與管理研究所碩士論文。
洪佳慧,複雜系統下的醫學教育:由解構社會脈絡到共構醫學知識的問題導向學習課程,科學教育學刊,2018,第二十六卷第二期,149-170。
科學月刊,科學月刊雜誌,2019年2月號。
徐位瑾,(2018),以服務創新觀點探討某教學醫院醫療服務品質及以病人為中心之醫療照護之研究,臺北醫學大學生物科技高階管理碩士在職專班學位論文。
高翊緯、謝邦昌。(2018)。人工智慧應用之發展與回顧-以醫療業應用前景與概況為例。Journal of Data Analysis,13(6),255-268。
張智為、邱冠儒。(2017)。未來醫療:GPU 技術引領人工智慧醫療時代。電工通訊季刊,127-130。
許有進。(2018)。臺灣發展人工智慧之挑戰與機會。國家發展委員會,國土及公共治理季刊, 6(4), 28-39。
陳亮恭,李威儒,(2017),智慧醫療數位轉型與再進化。國家發展委員會,國土及公共治理季刊, 5(4), 38-43。
黃勢璋,(2018),我國發展AI+健康醫療產業之策略研析。經濟前瞻, (176),111-117。
劉大任,(2018),醫療體系的擴張與其企業社會責任-以中國醫藥大學附設醫院在 1995-2017 年的策略發展為個案研究,臺北醫學大學醫務管理學系碩士在職專班學位論文,1-104。
劉德謙,(2019),基於大數據方法分析之即時智慧醫療需求量預測-個案研究,國立台北科技大學工業工程與管理研究所碩士論文。
蔡淳娟。(2018)。臨床思辨過程的理論與應用。台灣擬真醫學教育期刊,5(2),38-43。
衛生福利部。2019。108年度施政計畫。https://www.mohw.gov.tw/lp-11-1.html。
衛生福利部中央健康保險署。2019。全民健康保險資料人工智慧應用服務試辦,https://www.nhi.gov.tw/。
鄭博文,(2019),基於嵌入式系統的深度學習應用之研究—以人臉辨識為例。
盧燕嬌、陳麗琴。(2017)。智慧醫療與健康照護。臺灣護理學會護理雜誌,201708 (64:4期)。
魏于翔。(2018)。全球智慧醫療發展趨勢。農業生技產業季刊, 56期 (2018 / 12 / 31) , P1 – 7。
中國醫藥大學附設醫院,https://www.cmuh.cmu.edu.tw/Home/CmuhIndex