簡易檢索 / 詳目顯示

研究生: 鄭晶尹
Cheng, Ching-Yin
論文名稱: 氣候變遷對都市能耗與人體熱舒適之衝擊與調適
The impact and adaptation of climate change on urban energy consumption and thermal comfort
指導教授: 林子平
Lin, Tzu-Ping
學位類別: 博士
Doctor
系所名稱: 規劃與設計學院 - 建築學系
Department of Architecture
論文出版年: 2024
畢業學年度: 113
語文別: 中文
論文頁數: 92
中文關鍵詞: 氣候變遷熱舒適室內溫度冷房負荷高齡者風險
外文關鍵詞: Climate Change, Thermal Comfort, Indoor air temperature, Cooling Load, Elderly Risks
相關次數: 點閱:51下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 全球暖化加劇,2011年~2020年全球地表溫度比前工業化時代升高了1.09°C,使得各地近年發生高溫化現象,且隨著城市高度密集發展,許多城市已出現都市熱島現象。由於中央氣象監測站設置數量不多且部分監測站位處海拔較高地區,監測數據無法清楚呈現都市熱島的範圍與強度,國際間過去多項研究利用依據暖化情境模擬的未來氣候數據分析未來都市氣候的變化,然而鮮少有研究探討氣候變化與都市開發程度的關聯性,也較少探討對於室內氣溫及居住環境舒適度可能造成的影響與衝擊。
    本研究運用國家災害防救科技中心(NCDR)產製的高解析度全球大氣模式(HiRAM)依據RCP8.5暖化情境模擬的氣候資料,再透過區域模式WRF將資料降至5公里解析度。探討台北市及新北市在基期(1995-2014)與全球暖化程度升溫2℃(2034-2053)的戶外環境和室內環境的差異,並針對高齡者舒適度探討氣候變遷可能產生的風險。研究結果顯示全球暖化程度升溫2℃都市熱島高溫強度將增強,且低溫區的增幅使得熱島中心範圍擴大,未來面對高溫風險的區域將會增加。戶外高溫區域主要在建成區內,且夏季戶外平均氣溫及增加幅度與都市的開發程度有其相關性。
    室內環境方面,都市開發程度越高的區域其夏季室內平均氣溫越高,全年感受暖熱的累計時數與全年冷房負荷也越高。高度開發區及次高開發區夏季平均室內氣溫將增加約0.9℃,室內環境全年感受暖熱的累計時數將大於4個月,將使得全年冷房負荷增加約2倍。低度開發區雖然夏季室內平均氣溫較低,但因感受暖熱累計時數增加率較高,未來對於室內溫度上升的感受仍然顯著。此外,高齡者將遭受到的高溫風險更高,高度開發區及次高開發區的室內環境全年感受暖熱累計時數約為5.9個月,在面對超高齡社會的情形下,面對住宅冷房負荷需求增加及高齡者健康風險將會是未來重要的議題。

    Global warming continues to intensify, and numerous studies have employed climate projections to analyze future urban climate changes. However, limited research has examined the potential impacts on indoor temperatures and residential comfort.
    This study utilizes high-resolution climate data generated by the High-Resolution Atmospheric Model under the RCP8.5 warming scenario, developed by the National Science and Technology Center for Disaster Reduction. The analysis focuses on differences in outdoor and indoor environments in Taipei and New Taipei during the baseline period (1995–2014) and under a 2°C global warming scenario (2034–2053).
    The results reveal that the intensity of urban heat islands will increase, with greater temperature increments in low-temperature zones leading to an expansion of UHI core areas. Consequently, regions exposed to high-temperature risks are expected to grow. Outdoor high-temperature zones are primarily concentrated in built-up urban areas, and both the summer outdoor average temperature and its rate of increase are strongly correlated with urban development intensity.
    In highly and moderately developed zones, the average indoor summer temperature is projected to increase by approximately 0.9°C. The cumulative annual hours of indoor discomfort are expected to exceed four months, with annual cooling energy demands doubling. Although less developed areas exhibit lower average indoor summer temperatures, the rate of increase in discomfort hours is higher, indicating significant future impacts on indoor heat perception. Elderly populations will face heightened heat risks, with the cumulative annual hours of indoor discomfort in highly and moderately developed zones reaching approximately 5.9 months.

    第一章、 緒論 1 第一節、 研究背景與動機 1 第二節、 研究目的 2 第三節、 研究流程 2 第二章、 文獻回顧 3 第一節、 都市熱島效應 3 第二節、 氣候變遷與都市能耗 5 第三節、 人體舒適度 7 第四節、 氣溫與健康風險 14 第三章、 研究方法 15 第一節、 研究範圍 15 第二節、 建築能源模型 21 第四章、 基期與全球暖化程度升溫2℃之戶外環境 23 第一節、 都市熱島強度與範圍 24 第二節、 夏季戶外平均氣溫 29 第三節、 空調用電月份戶外平均氣溫 32 第四節、 戶外環境分析結果彙整 34 第五章、 基期與全球暖化程度升溫2℃之室內環境 35 第一節、 夏季室內平均氣溫 35 第二節、 全年室內舒適度 39 第三節、 全年冷房負荷 41 第四節、 室內環境分析結果彙整 47 第六章、 高齡人口之衝擊與熱舒適調適策略 48 第一節、 高齡人口面臨之衝擊 49 第二節、 戶外熱舒適調適策略 52 第七章、 結論與建議 62 第一節、 研究結論 62 第二節、 研究限制與後續建議 64 參考文獻 65

    1. Arima, Y., Ooka, R., Kikumoto, H., & Yamanaka, T. (2016). Effect of climate change on building cooling loads in Tokyo in the summers of the 2030s using dynamically downscaled GCM data. Energy and Buildings, 114, 123-129.
    2. Aghamolaei, R., Azizi, M. M., Aminzadeh, B., & O’Donnell, J. (2022). A comprehensive review of outdoor thermal comfort in urban areas: Effective parameters and approaches. Energy & Environment, 0958305X221116176. https://doi.org/10.1177/0958305X221116176
    3. Bugler, J. W. (1977). The determination of hourly insolation on an inclined plane using a diffuse irradiance model based on hourly measured global horizontal insolation. Solar energy, 19(5), 477-491.
    4. Bruse, M., & Fleer, H. (1998). Simulating surface–plant–air interactions inside urban environments with a three dimensional numerical model. Environmental modelling & software, 13(3-4), 373-384. https://doi.org/10.1016/S1364-8152(98)00042-5
    5. Bloom, D. E., Boersch-Supan, A., McGee, P., & Seike, A. (2011). Population aging: facts, challenges, and responses. Benefits and compensation International, 41(1), 22.
    6. Boyano, A., Hernandez, P., & Wolf, O. (2013). Energy demands and potential savings in European office buildings: Case studies based on EnergyPlus simulations. Energy and buildings, 65, 19-28. https://doi.org/10.1016/j.enbuild.2013.05.039
    7. Chandrasekaran, J., & Kumar, S. (1994). Hourly diffuse fraction correlation at a tropical location. Solar Energy, 53(6), 505-510.
    8. Cheng, M. J., Hwang, R. L., & Lin, T. P. (2008). Field experiments on thermal comfort requirements for campus dormitories in Taiwan. Indoor and Built Environment, 17(3), 191-202.
    9. Chung, Y. H., Yang, D. W., & Ou, C. Q. (2009). The impact of extreme temperatures on cardiovascular mortality in Taiwan: A time series study. Science of the Total Environment, 408(2), 468-474. https://doi.org/10.1016/j.scitotenv.2009.10.038
    10. Cohen, P., Potchter, O., & Matzarakis, A. (2013). Human thermal perception of Coastal Mediterranean outdoor urban environments. Applied Geography, 37, 1-10. https://doi.org/10.1016/j.apgeog.2012.11.001
    11. Chatzidimitriou, A., & Yannas, S. (2017). Street canyon design and improvement potential for urban open spaces; the influence of canyon aspect ratio and orientation on microclimate and outdoor comfort. Sustainable cities and society, 33, 85-101. https://doi.org/10.1016/j.scs.2017.05.019
    12. Cheung, P. K., & Jim, C. Y. (2017). Determination and application of outdoor thermal benchmarks. Building and Environment, 123, 333-350. https://doi.org/10.1016/j.buildenv.2017.07.008
    13. Cui, Y., Yan, D., Hong, T., & Ma, J. (2017). Temporal and spatial characteristics of the urban heat island in Beijing and the impact on building design and energy performance. Energy, 130, 286-297.
    14. Ciancio, V., Falasca, S., Golasi, I., Curci, G., Coppi, M., & Salata, F. (2018). Influence of input climatic data on simulations of annual energy needs of a building: EnergyPlus and WRF modeling for a case study in Rome (Italy). Energies, 11(10), 2835.
    15. Chen, J.-H., & Wang, C.-Y. (2019). Urban ventilation corridors and cooling effects: Evidence from a subtropical city. Building and Environment, 161, 106234. https://doi.org/10.1016/j.buildenv.2019.106234
    16. Chen, C. H., Lin, Y. H., & Chang, H. Y. (2019). The effect of temperature variability on cardiovascular mortality in Taiwan. Journal of Environmental Research, 175, 345-354.
    17. Chen, W., Deng, Y., & Cao, B. (2022). An experimental study on the difference in thermal comfort perception between preschool children and their parents. Journal of Building Engineering, 56, 104723.
    18. Cheng, C. Y., & Lin, T. P. (2024). Decision tree analysis of thermal comfort in the courtyard of a senior residence in hot and humid climate. Sustainable Cities and Society, 101, 105165.
    19. Erbs, D. G., Klein, S. A., & Duffie, J. A. (1982). Estimation of the diffuse radiation fraction for hourly, daily and monthly-average global radiation. Solar energy, 28(4), 293-302.
    20. Fanger, P. O. (1970). Thermal comfort. Analysis and applications in environmental engineering. Thermal comfort. Analysis and applications in environmental engineering.
    21. Fumo, N., Mago, P., & Luck, R. (2010). Methodology to estimate building energy consumption using EnergyPlus Benchmark Models. Energy and Buildings, 42(12), 2331-2337. https://doi.org/10.1016/j.enbuild.2010.07.027
    22. Fann, G. J., & Hsu, Y. H. (2010). Socio-economic impacts of population aging in taiwan. Taiwan Geriatr. Gerontol, 5(3), 149-168.
    23. Gagge, A. P., Stolwijk, J. A., & Hardy, J. D. (1967). Comfort and thermal sensations and associated physiological responses at various ambient temperatures. Environmental research, 1(1), 1-20.
    24. Gagge, A. P., Fobelets, A. P., & Berglund, L. (1986). A standard predictive index of human response to the thermal environment. ASHRAE trans, 92(2), 709-731.
    25. Grossman-Clarke, S., Zehnder, J. A., Loridan, T., & Grimmond, C. S. B. (2010). Contribution of land use changes to near-surface air temperatures during recent summer extreme heat events in the Phoenix metropolitan area. Journal of Applied Meteorology and Climatology, 49(8), 1649-1664.
    26. Gasparrini, A., Guo, Y., Sera, F., Vicedo-Cabrera, A. M., Huber, V., Tong, S., ... & Armstrong, B. (2015). Mortality risk attributable to high and low ambient temperature: A multicountry observational study. The Lancet, 386(9991), 369-375. https://doi.org/10.1016/S0140-6736(14)62114-0
    27. Guha, S., Govil, H., Dey, A., & Gill, N. (2018). Analytical study of land surface temperature with NDVI and NDBI using Landsat 8 OLI and TIRS data in Florence and Naples city, Italy. European Journal of Remote Sensing, 51(1), 667-678. https://doi.org/10.1080/22797254.2018.1474494
    28. Gao, H., Koch, C., & Wu, Y. (2019). Building information modelling based building energy modelling: A review. Applied energy, 238, 320-343. https://doi.org/10.1016/j.apenergy.2019.01.032
    29. Guo, C., Buccolieri, R., & Gao, Z. (2019). Characterizing the morphology of real street models and modeling its effect on thermal environment. Energy and Buildings, 203, 109433. https://doi.org/10.1016/j.enbuild.2019.109433
    30. Garcia, C. K., Renteria, L. I., Leite-Santos, G., Leon, L. R., & Laitano, O. (2022). Exertional heat stroke: pathophysiology and risk factors. BMJ medicine, 1(1).
    31. Hawlader, M. N. A. (1984). Diffuse, global and extra-terrestrial solar radiation for Singapore. International journal of ambient energy, 5(1), 31-38.
    32. Höppe, P. (1999). The physiological equivalent temperature–a universal index for the biometeorological assessment of the thermal environment. International journal of Biometeorology, 43(2), 71-75. https://doi.org/10.1007/s004840050118
    33. Hwang, R. L., Lin, T. P., & Kuo, N. J. (2006). Field experiments on thermal comfort in campus classrooms in Taiwan. Energy and Buildings, 38(1), 53-62.
    34. Hong, S., Lakshmi, V., Small, E. E., Chen, F., Tewari, M., & Manning, K. W. (2009). Effects of vegetation and soil moisture on the simulated land surface processes from the coupled WRF/Noah model. Journal of Geophysical Research: Atmospheres, 114(D18).
    35. Hwang, R. L., Lin, T. P., Chen, C. P., & Kuo, N. J. (2009). Investigating the adaptive model of thermal comfort for naturally ventilated school buildings in Taiwan. International journal of biometeorology, 53, 189-200.
    36. Hwang, R. L., Cheng, M. J., Lin, T. P., & Ho, M. C. (2009). Thermal perceptions, general adaptation methods and occupant's idea about the trade-off between thermal comfort and energy saving in hot–humid regions. Building and Environment, 44(6), 1128-1134.
    37. Hwang, R. L., & Chen, C. P. (2010). Field study on behaviors and adaptation of elderly people and their thermal comfort requirements in residential environments. Indoor air, 20(3), 235-245.
    38. Huang, C. R., Wang, X., & Ren, H. (2011). Urban heat islands and health outcomes: A study of Taipei City. International Journal of Environmental Research and Public Health, 8(3), 723-735. https://doi.org/10.3390/ijerph8030723
    39. Hwang, R. L., Lin, T. P., & Matzarakis, A. (2011). Seasonal effects of urban street shading on long-term outdoor thermal comfort. Building and environment, 46(4), 863-870. https://doi.org/10.1016/j.buildenv.2010.10.017
    40. Huttner, S. (2012). Further development and application of the 3D microclimate simulation ENVI-met (Doctoral dissertation, Mainz, Univ., Diss., 2012). http://doi.org/10.25358/openscience-2022
    41. Huang, Y., Yu, B., Zhou, J., Hu, C., Tan, W., Hu, Z., & Wu, J. (2013). Toward automatic estimation of urban green volume using airborne LiDAR data and high resolution remote sensing images. Frontiers of Earth Science, 7, 43-54. https://doi.org/10.1007/s11707-012-0339-6
    42. Huang, C. R., Wang, C. Y., & Liao, P. H. (2016). Heat waves and their impact on mortality in Taiwan. International Journal of Biometeorology, 60(7), 1023-1032.
    43. Huang, K. T., & Hwang, R. L. (2016). Future trends of residential building cooling energy and passive adaptation measures to counteract climate change: The case of Taiwan. Applied Energy, 184, 1230-1240.
    44. Hwang, R. L., Lin, C. Y., & Huang, K. T. (2017). Spatial and temporal analysis of urban heat island and global warming on residential thermal comfort and cooling energy in Taiwan. Energy and Buildings, 152, 804-812.
    45. Hwang, R. L. (2018). Comfort temperature and preferred temperature in Taiwan. Sustainable houses and living in the hot-humid climates of Asia, 155-163.
    46. Huang, K. T., Yang, S. R., Matzarakis, A., & Lin, T. P. (2018). Identifying outdoor thermal risk areas and evaluation of future thermal comfort concerning shading orientation in a traditional settlement. Science of the Total Environment, 626, 567-580. https://doi.org/10.1016/j.scitotenv.2018.01.031
    47. Huang, K. T. (2020). Identifying a suitable hourly solar diffuse fraction model to generate the typical meteorological year for building energy simulation application. Renewable Energy, 157, 1102-1115. https://doi.org/10.1016/j.renene.2020.05.094
    48. Huang, W.-L., Chen, Y.-H., & Chen, C.-F. (2020). The interaction between climate change and urban heat islands in Taiwan: Risk assessment and adaptation strategies. Atmospheric Environment, 230, 117499. https://doi.org/10.1016/j.atmosenv.2020.117499
    49. Hwang, R. L., Lin, T. P., & Lin, F. Y. (2020). Evaluation and mapping of building overheating risk and air conditioning use due to the urban heat island effect. Journal of Building Engineering, 32, 101726.
    50. Huang, W.-L., & Lin, T.-P. (2021). Quantifying urban greening effects on the urban heat island phenomenon. Science of the Total Environment, 780, 146583. https://doi.org/10.1016/j.scitotenv.2021.146583
    51. Hwang, R. L., & Chen, W. A. (2022). Creating glazed facades performance map based on energy and thermal comfort perspective for office building design strategies in Asian hot-humid climate zone. Applied Energy, 311, 118689. https://doi.org/10.1016/j.apenergy.2022.118689
    52. Hwang, R. L., & Chen, W. A. (2022). Identifying relative importance of solar design determinants on office building façade for cooling loads and thermal comfort in hot-humid climates. Building and Environment, 226, 109684. https://doi.org/10.1016/j.buildenv.2022.109684
    53. Huang, J., Chen, Y., Jones, P., & Hao, T. (2022). Heat stress and outdoor activities in open spaces of public housing estates in Hong Kong: A perspective of the elderly community. Indoor and Built Environment, 31(6), 1447-1463. https://doi.org/10.1177/1420326X20950448
    54. IPCC, 2021: Summary for Policymakers. In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. In Press.
    55. Johansson, E. (2006). Influence of urban geometry on outdoor thermal comfort in a hot dry climate: A study in Fez, Morocco. Building and environment, 41(10), 1326-1338.
    56. Kovats, R. S., & Hajat, S. (2008). Heat stress and public health: a critical review. Annu. Rev. Public Health, 29, 41-55. https://doi.org/10.1146/annurev.publhealth.29.020907.090843
    57. Kingsford, C., & Salzberg, S. L. (2008). What are decision trees?. Nature biotechnology, 26(9), 1011-1013. https://doi.org/10.1038/nbt0908-1011
    58. Kusaka, H., Hara, M., & Takane, Y. (2012). Urban climate projection by the WRF model at 3-km horizontal grid increment: dynamical downscaling and predicting heat stress in the 2070’s August for Tokyo, Osaka, and Nagoya metropolises. 気象集誌. 第 2 輯, 90(0), 47-63.
    59. Kotsiantis, S. B. (2013). Decision trees: a recent overview. Artificial Intelligence Review, 39(4), 261-283. https://doi.org/10.1007/s10462-011-9272-4
    60. Kuo, C. W., Chang, W. C., & Chang, K. C. (2014). Modeling the hourly solar diffuse fraction in Taiwan. Renewable Energy, 66, 56-61.
    61. Kikumoto, H., Ooka, R., Arima, Y., & Yamanaka, T. (2015). Study on the future weather data considering the global and local climate change for building energy simulation. Sustainable Cities and Society, 14, 404-413.
    62. Lam, J. C., & Li, D. H. (1996). Correlation between global solar radiation and its direct and diffuse components. Building and environment, 31(6), 527-535.
    63. Lin, T. P., & Matzarakis, A. (2008). Tourism climate and thermal comfort in Sun Moon Lake, Taiwan. International journal of biometeorology,52(4), 281-290. https://doi.org/10.1007/s00484-007-0122-7
    64. Lin, T. P. (2009). Thermal perception, adaptation and attendance in a public square in hot and humid regions. Building and environment, 44(10), 2017-2026. https://doi.org/10.1016/j.buildenv.2009.02.004
    65. Lin, T. P., Matzarakis, A., & Hwang, R. L. (2010). Shading effect on long-term outdoor thermal comfort. Building and environment, 45(1), 213-221. https://doi.org/10.1016/j.buildenv.2009.06.002
    66. Lee, K., & Lee, D. (2015). The relationship between indoor and outdoor temperature in two types of residence. Energy Procedia, 78, 2851-2856. https://doi.org/10.1016/j.egypro.2015.11.647
    67. Lin, C. Y., Chua, Y. J., Sheng, Y. F., Hsu, H. H., Cheng, C. T., & Lin, Y. Y. (2015). Altitudinal and latitudinal dependence of future warming in Taiwan simulated by WRF nested with ECHAM5/MPIOM. International Journal of Climatology, 35(8).
    68. Liang, W. M., Liu, W. P., & Kuo, H. W. (2017). Ambient temperature and emergency room visits for acute stroke in Taiwan. Environmental Research, 154, 121-127. https://doi.org/10.1016/j.envres.2016.12.017
    69. Li, X., Zhou, Y., Yu, S., Jia, G., Li, H., & Li, W. (2019). Urban heat island impacts on building energy consumption: A review of approaches and findings. Energy, 174, 407-419.
    70. Lobaccaro, G., Acero, J. A., Sanchez Martinez, G., Padro, A., Laburu, T., & Fernandez, G. (2019). Effects of orientations, aspect ratios, pavement materials and vegetation elements on thermal stress inside typical urban canyons. International journal of environmental research and public health, 16(19), 3574. https://doi.org/10.3390/ijerph16193574
    71. Lin, Y.-M., Chen, T.-H., & Huang, J.-L. (2020). High-reflectance materials for urban heat island mitigation in subtropical areas: A case study. Energy and Buildings, 210, 109743. https://doi.org/10.1016/j.enbuild.2020.109743
    72. Lin, Y. J., & Chuang, C. C. (2020). Occupational heat stress and worker productivity in Taiwan. Occupational and Environmental Medicine, 77(5), 327-334.
    73. Larriva, M. T. B., & Higueras, E. (2020). Health risk for older adults in Madrid, by outdoor thermal and acoustic comfort. Urban Climate, 34, 100724. https://doi.org/10.1016/j.uclim.2020.100724
    74. Lau, T. K., & Lin, T. P. (2024). Lowering the difficulty of mesoscale sky view factor mapping using satellite products. Remote Sensing Applications: Society and Environment, 34, 101174. https://doi.org/10.1016/j.rsase.2024.101174
    75. Matzarakis, A., Mayer, H., & Iziomon, M. G. (1999). Applications of a universal thermal index: physiological equivalent temperature. International journal of biometeorology, 43, 76-84. https://doi.org/10.1007/s004840050119
    76. Mote, T. L., Lacke, M. C., & Shepherd, J. M. (2007). Radar signatures of the urban effect on precipitation distribution: A case study for Atlanta, Georgia. Geophysical Research Letters, 34(20).
    77. Matzarakis, A., & Amelung, B. (2008). Physiological equivalent temperature as indicator for impacts of climate change on thermal comfort of humans. In Seasonal forecasts, climatic change and human health (pp. 161-172). Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6877-5_10
    78. Mahmood, R., Leeper, R., & Quintanar, A. I. (2011). Sensitivity of planetary boundary layer atmosphere to historical and future changes of land use/land cover, vegetation fraction, and soil moisture in Western Kentucky, USA. Global and Planetary Change, 78(1-2), 36-53.
    79. Mitra, C., Shepherd, J. M., & Jordan, T. (2012). On the relationship between the premonsoonal rainfall climatology and urban land cover dynamics in Kolkata city, India. International Journal of Climatology, 32(9), 1443-1454.
    80. Middel, A., Selover, N., Hagen, B., & Chhetri, N. (2016). Impact of shade on outdoor thermal comfort—a seasonal field study in Tempe, Arizona. International journal of biometeorology, 60(12), 1849-1861. https://doi.org/10.1007/s00484-016-1172-5
    81. Morakinyo, T. E., Dahanayake, K. K. C., Adegun, O. B., & Balogun, A. A. (2016). Modelling the effect of tree-shading on summer indoor and outdoor thermal condition of two similar buildings in a Nigerian university. Energy and Buildings, 130, 721-732. https://doi.org/10.1016/j.enbuild.2016.08.087
    82. Natsume, K., Ogawa, T., Sugenoya, J., Ohnishi, N., & Imai, K. (1992). Preferred ambient temperature for old and young men in summer and winter. International journal of biometeorology, 36, 1-4. https://doi.org/10.1007/BF01208726
    83. Nakano, J., & Tanabe, S. I. (2004). Thermal comfort and adaptation in semi-outdoor environments. Ashrae Transactions, 110, 543.
    84. Nasrollahi, N., Hatami, M., Khastar, S. R., & Taleghani, M. (2017). Numerical evaluation of thermal comfort in traditional courtyards to develop new microclimate design in a hot and dry climate. Sustainable cities and society, 35, 449-467. https://doi.org/10.1016/j.scs.2017.08.017
    85. Orgill, J. F., & Hollands, K. G. T. (1977). Correlation equation for hourly diffuse radiation on a horizontal surface. Solar energy, 19(4), 357-359.
    86. Oke, T. R. (1982). The energetic basis of the urban heat island. Quarterly journal of the royal meteorological society, 108(455), 1-24.
    87. Reindl, D. T., Beckman, W. A., & Duffie, J. A. (1990). Diffuse fraction correlations. Solar energy, 45(1), 1-7.
    88. Rokach, L., & Maimon, O. (2005). Decision trees. In Data mining and knowledge discovery handbook (pp. 165-192). Springer, Boston, MA. https://doi.org/10.1007/0-387-25465-X_9
    89. Rajbhandari, R., Shrestha, A. B., Nepal, S., & Wahid, S. (2016). Projection of future climate over the Koshi River basin based on CMIP5 GCMs. Atmospheric and Climate Sciences, 6(2), 190-204.
    90. Ren, Z., Fu, Y., Du, Y., & Zhao, H. (2019). Spatiotemporal patterns of urban thermal environment and comfort across 180 cities in summer under China’s rapid urbanization. PeerJ, 7, e7424.
    91. Smoyer, K. E., Rainham, D. G., & Hewko, J. N. (2000). Heat-stress-related mortality in five cities in Southern Ontario: 1980–1996. International Journal of Biometeorology, 44(4), 190-197. https://doi.org/10.1007/s004840000070
    92. Shepherd, J. M., Pierce, H., & Negri, A. J. (2002). Rainfall modification by major urban areas: Observations from spaceborne rain radar on the TRMM satellite. Journal of Applied Meteorology and Climatology, 41(7), 689-701.
    93. Spagnolo, J., & De Dear, R. (2003). A field study of thermal comfort in outdoor and semi-outdoor environments in subtropical Sydney Australia. Building and environment, 38(5), 721-738. https://doi.org/10.1016/S0360-1323(02)00209-3
    94. Sugiyama, T., & Thompson, C. W. (2007). Outdoor environments, activity and the well-being of older people: conceptualising environmental support. Environment and Planning A, 39(8), 1943-1960. https://doi.org/10.1068/a38226
    95. Standard, A. S. H. R. A. E. (2010). Thermal environmental conditions for human occupancy. ANSI/ASHRAE, 55, 5.
    96. Srivanit, M., & Hokao, K. (2013). Evaluating the cooling effects of greening for improving the outdoor thermal environment at an institutional campus in the summer. Building and environment, 66, 158-172. https://doi.org/10.1016/j.buildenv.2013.04.012
    97. Santamouris, M. (2014). Cooling the cities–a review of reflective and green roof mitigation technologies to fight heat island and improve comfort in urban environments. Solar energy, 103, 682-703. https://doi.org/10.1016/j.solener.2012.07.003
    98. Schreyer, J., Geiß, C., & Lakes, T. (2016). TanDEM-X for large-area modeling of urban vegetation height: evidence from Berlin, Germany. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(5), 1876-1887. https://doi.org/10.1109/JSTARS.2015.2508660
    99. Salvati, A., Roura, H. C., & Cecere, C. (2017). Assessing the urban heat island and its energy impact on residential buildings in Mediterranean climate: Barcelona case study. Energy and Buildings, 146, 38-54.
    100. Shi, M., & Carnielo, E. (2017). Impact of urban temperatures on energy performance and thermal comfort in residential buildings. The case of Rome, Italy. Energy and Buildings, 157, 20-29.
    101. Salata, F., Golasi, I., Petitti, D., de Lieto Vollaro, E., Coppi, M., & de Lieto Vollaro, A. (2017). Relating microclimate, human thermal comfort and health during heat waves: An analysis of heat island mitigation strategies through a case study in an urban outdoor environment. Sustainable cities and society, 30, 79-96. https://doi.org/10.1016/j.scs.2017.01.006
    102. Shabunko, V., Lim, C. M., & Mathew, S. (2018). EnergyPlus models for the benchmarking of residential buildings in Brunei Darussalam. Energy and Buildings, 169, 507-516. https://doi.org/10.1016/j.enbuild.2016.03.039
    103. Shi, L., Luo, Z., Matthews, W., Wang, Z., Li, Y., & Liu, J. (2019). Impacts of urban microclimate on summertime sensible and latent energy demand for cooling in residential buildings of Hong Kong. Energy, 189, 116208.
    104. Samadpour Shahrak, E., Sattari Sarbangholi, H., & Moosavi, M. S. (2022). Improving Outdoor Thermal Comfort for Elderly in Residential Complexes. Iranian (Iranica) Journal of Energy & Environment, 13(1), 55-70. https://doi.org/10.5829/ijee.2022.13.01.07
    105. Tsai, H. H., Tzeng, S. Y. (2006). A comparison of lifestyle and behavior pattern for the elderly at senior apartment and the elderly living alone at home-By the cases in Kaohsiung area
    106. Thorsson, S., Honjo, T., Lindberg, F., Eliasson, I., & Lim, E. M. (2007). Thermal comfort and outdoor activity in Japanese urban public places. Environment and Behavior, 39(5), 660-684.
    107. Taleghani, M., Kleerekoper, L., Tenpierik, M., & Van Den Dobbelsteen, A. (2015). Outdoor thermal comfort within five different urban forms in the Netherlands. Building and environment, 83, 65-78. https://doi.org/10.1016/j.buildenv.2014.03.014
    108. Taleghani, M., & Berardi, U. (2018). The effect of pavement characteristics on pedestrians' thermal comfort in Toronto. Urban climate, 24, 449-459. https://doi.org/10.1016/j.uclim.2017.05.007
    109. Toparlar, Y., Blocken, B., Maiheu, B., & Van Heijst, G. J. F. (2018). Impact of urban microclimate on summertime building cooling demand: A parametric analysis for Antwerp, Belgium. Applied Energy, 228, 852-872.
    110. Tsai, C.-H., Huang, H.-C., & Lin, C.-C. (2021). Assessing land use changes and their impacts on the urban heat island effect in subtropical urban areas: Evidence from Taiwan. Science of the Total Environment, 772, 145545. https://doi.org/10.1016/j.scitotenv.2021.145545
    111. Tseng, C.-M., & Hsu, M.-C. (2022). Evaluating mitigation measures for urban heat islands: Case studies of green roofs and reflective materials in Taipei City. Urban Climate, 43, 101056. https://doi.org/10.1016/j.uclim.2022.101056
    112. Tsay, Y. S., Chen, R., & Fan, C. C. (2022). Study on thermal comfort and energy conservation potential of office buildings in subtropical Taiwan. Building and Environment, 208, 108625.
    113. Teshnehdel, S., Gatto, E., Li, D., & Brown, R. D. (2022). Improving Outdoor Thermal Comfort in a Steppe Climate: Effect of Water and Trees in an Urban Park. Land, 11(3), 431.
    114. Wiles, J. L., Leibing, A., Guberman, N., Reeve, J., & Allen, R. E. (2012). The meaning of “aging in place” to older people. The gerontologist, 52(3), 357-366.
    115. Watanabe, S., Nagano, K., Ishii, J., & Horikoshi, T. (2014). Evaluation of outdoor thermal comfort in sunlight, building shade, and pergola shade during summer in a humid subtropical region. Building and Environment, 82, 556-565. https://doi.org/10.1016/j.buildenv.2014.10.002
    116. Wang, Y., Bakker, F., de Groot, R., Wortche, H., & Leemans, R. (2015). Effects of urban trees on local outdoor microclimate: synthesizing field measurements by numerical modelling. Urban Ecosystems, 18(4), 1305-1331. https://doi.org/10.1007/s11252-015-0447-7
    117. Wang, M., Xiong, Z., & Yan, X. (2015). Modeling the climatic effects of the land use/cover change in eastern China. Physics and Chemistry of the Earth, Parts A/B/C, 87, 97-107.
    118. Wilby, R. L., Charles, S. P., Zorita, E., Timbal, B., Whetton, P., & Mearns, L. O. (2004). Guidelines for use of climate scenarios developed from statistical downscaling methods. Supporting material of the Intergovernmental Panel on Climate Change, available from the DDC of IPCC TGCIA, 27.
    119. World Health Organization (WHO). (2021). Climate change and health research: Current trends, gaps and perspectives for the future.
    120. Xu, J., Wei, Q., Huang, X., Zhu, X., & Li, G. (2010). Evaluation of human thermal comfort near urban waterbody during summer. Building and environment, 45(4), 1072-1080.
    121. Yu, Z., Haghighat, F., Fung, B. C., & Yoshino, H. (2010). A decision tree method for building energy demand modeling. Energy and Buildings, 42(10), 1637-1646. https://doi.org/10.1016/j.enbuild.2010.04.006
    122. Yung, E. H. K., Wang, S., & Chau, C. K. (2019). Thermal perceptions of the elderly, use patterns and satisfaction with open space. Landscape and urban planning, 185, 44-60. https://doi.org/10.1016/j.landurbplan.2019.01.003
    123. Yeh, C.-T., Chang, C.-P., & Lin, T.-P. (2019). Urban heat island effects on thermal comfort and adaptation strategies in a subtropical city: A case study of Taipei, Taiwan. Building and Environment, 148, 501-516. https://doi.org/10.1016/j.buildenv.2018.11.018
    124. Yang, X., Peng, L. L., Jiang, Z., Chen, Y., Yao, L., He, Y., & Xu, T. (2020). Impact of urban heat island on energy demand in buildings: Local climate zones in Nanjing. Applied Energy, 260, 114279.
    125. Yao, P., Yu, Z., Zhang, Y., & Xu, T. (2023). Application of machine learning in carbon capture and storage: An in-depth insight from the perspective of geoscience. Fuel, 333, 126296. https://doi.org/10.1016/j.fuel.2022.126296
    126. Zha, Y., Gao, J., & Ni, S. (2003). Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. International journal of remote sensing, 24(3), 583-594. https://doi.org/10.1080/01431160304987
    127. Zhang, N., Gao, Z., Wang, X., & Chen, Y. (2010). Modeling the impact of urbanization on the local and regional climate in Yangtze River Delta, China. Theoretical and applied climatology, 102, 331-342.
    128. Zhou, W. (2013). An object-based approach for urban land cover classification: Integrating LiDAR height and intensity data. IEEE Geoscience and Remote Sensing Letters, 10(4), 928-931. https://doi.org/10.1109/LGRS.2013.2251453
    129. Zhai, Y., Zhang, Y., Meng, Q., Chen, H., & Wang, J. (2014). Gender differences in thermal comfort in a hot-humid climate.
    130. Zamani, Z., Heidari, S., & Hanachi, P. (2018). Reviewing the thermal and microclimatic function of courtyards. Renewable and Sustainable Energy Reviews, 93, 580-595. https://doi.org/10.1016/j.rser.2018.05.055
    131. 李岳蓉(2024)。都市綠化之可及性評估及熱輻射降溫模式探討。﹝碩士論文。國立成功大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/4rzsk6
    132. 林于凱, 吳祐誠, 黃鈴雅, 林嘉明, 吳聰能, 周昌弘, ... & 王玉純. (2011). 極端氣溫對台灣都會區 65 歲以上族群心肺疾病死亡之風險趨勢分析. 台灣公共衛生雜誌, 30(3), 277-289.
    133. 許晃雄、王嘉琪、陳正達、李明旭、詹士樑 (2024)。國家氣候變遷科學報告2024:現象、衝擊與調適 [許晃雄、李明旭 主編]。國家科學及技術委員會與環境部聯合出版。
    134. 黃鈴雅, 王玉純, 柳中明, 王根樹, & 宋鴻樟. (2012). 氣溫變化和心血管及呼吸道疾病死亡的相關. 台灣醫學, 16(5), 471-478.

    無法下載圖示 校內:2025-12-25公開
    校外:2025-12-25公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE