| 研究生: |
蕭琦諳 Hsiao, Chi-An |
|---|---|
| 論文名稱: |
尾氣續燃器於固態氧化物燃料電池與微型渦輪整合發電系統之設計研究 Sequential Burner Design on the Integration of Solid Oxide Fuel Cell and Micro-Gas Turbine Generation System |
| 指導教授: |
賴維祥
Lai, Wei-Hsiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 99 |
| 中文關鍵詞: | 固態氧化物燃料電池 、貧油極限 、尾氣續燃器 |
| 外文關鍵詞: | Lean Combustion Limit, Sequential Burner, Solid Oxide Fuel Cell |
| 相關次數: | 點閱:109 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要目的是設計一具符合燃燒核研所目前固態氧化物燃料電池(Solid Oxide Fuel Cell, SOFC)實體的出口排放剩餘氣體條件的尾氣續燃器(Sequential Burner, SeqB),而由於SeqB裡的燃燒條件都是接近甚至低於貧油極限(Lean Combustion Limit),因此吾人採以一幅流式渦漩器及突張式設計來作為SeqB的主要構型,主要希望藉由創造迴流區來達到SeqB穩焰的效果,而吾人也透過實際SeqB出口排氣成份量測來驗證SeqB燃燒性能。
由於實際SOFC出口溫度約在1100 K,因此為了有效模擬出趨近真實SOFC出口的氣流條件,吾人在本研究以三套陶瓷纖維電熱系統及一預熱燃燒室來模擬此條件,目前可以成功的模擬核研所SOFC出口條件,其中溫度加熱至1100±30 K,各成份之流量控制在誤差6%之內,其實驗數據與理論計算的結果相符;而在進行氫氣減量測試時本SeqB內的氫氣流量可低至一般氫氣可燃極限的1/10仍不至於熄滅,在SeqB排氣成份的理論推算及實際量測中也可以得知NOx的排放量是隨著SeqB工作溫度的升高而攀升,而在SeqB出口端氫氣及一氧化碳的含量也呈現極低的狀況,由此也可得知在SeqB內部的燃燒反應應該是十分完全的。
The motivation of this study is to design a sequential burner (SeqB) to match the requirements of Institute of Nuclear Energy Research (INER) for remained exhaust from solid oxide fuel cell (SOFC). Because the combustion condition of SeqB is nearly the lean combustion limit, a radial swirler and the sudden enlarge geometry are regarded as main designs feature of SeqB. Furthermore, through the measurements of emission at the SeqB exit, combustion performance of SeqB is verified as well.
For the SOFC exit temperature is about 1100 K, there are three sets of Ceramic Fiber Heater System and one preheater to effectively simulate the airflow condition of full-scale SOFC, and it is successfully reaching the exit condition of INER. The temperature was risen to 1100±30 K, and the error flow rate of each composition is below 6%. The experimental results consequently are consistent with our theoretical calculation. It is found that 1/10 equivalence ratio of hydrogen lean combustion limit can still maintain the combustion inside of SeqB. From theoretical calculation of exhaust composition within SeqB and experiment, it is found that the amount of NOx is increasing with the rising working temperature of SeqB. Meanwhile, the concentration of carbon monoxide and hydrogen is extremely low at the exit of SeqB; therefore the combustion should be reacted almost completely according to this result.
[1] 黃鎮江,“燃料電池,”全華科技圖書股份有限公司,台北,2003年11月。
[2] EG&G Ser Vices Parsons, Inc. “Fuel Cell Handbook,” (Sixth ed.)November
2002.
[3] 邱耀平,“固態能源轉換系統之熱工設計規劃,”核能研究所,桃園,2003年6月。
[4] Sadik Kakac and Yaman Yener, “Convective Heat Transfer,” 2nd, pp.119-125.
[5] Tomohiko Omura, Kenji Kobayashi “Hydrogen Embrittlement Properties of Stainless Steels in High Pressure Gaseous Hydrogen Environment E Valuated by SSRT,” WHTC 2005.
[6] F. Hermann, J. Palsson, F. mauss, “Combustor Design Analysis for SOFC Off-gases,” Fifth European Solid Oxide Fuel Cell Forum, July 2002, pp.961-971.
[7] K. K. Kuo, “Principles of Combustion,” John Wiley & Sons, Inc., 1986.
[8] I. Wierzba and B. B. Ale, “Effects of Temperature and Time of Explosure on The Flammability Limits of Hydrogen- Air Mixtures,” Int. J. Hydrogen Energy, Vol. 23, No. 12, 1998, pp.1197-1202.
[9] I. Wierzba and Q. Wang, “The flammability limits of H2-CO-CH4 mixtures in air at elevated temperatures,” Int. J. Hydrogen Energy, 31(2006) pp.485-489.
[10] Hydrogen Fuel Cell Engines and Related Technologies: Rev 0, December 2001, pp.1-18-1-21.
[11] R. W. Schefer, “Hydrogen enrichment for improved lean flame stability,” Int. J. Hydrogen Energy, 28 2003 pp.1131-1141.
[12] Hongsheng Guo and Gregory J. Small Wood, “The effect of hydrogen addition on flammability limit and NOX emission in ultra-lean counterflow CH4/air premixed flames,” Proceedings of the Combustion Institute, 30 2005 pp.303-311.
[13] F. Cozzi and A. Coghe, “Behavior of hydrogen-enriched non-premixed Swirled natural gas flames,” Int. J. Hydrogen Energy, 31 2006 pp.669-677.
[14] Shunsuke Kito and Kazunori Wakai, “Ignition limit of lean mixture by hydrogen flame jet ignition,” SAE Review, 21 2000 pp.373-378.
[15] Frank P. Incropera and David P. De Witt, “Introduction To Heat Transfer,”4th.
[16] http://na Vier.engr.colostate.edu/tools/
[17] A. H. Lefebvre, “Gas Turbine Combustion,” 2nd, Hemisphere Pub. Co., 1998.
[18] S. Mondal, A. Datta, A. Sarkar, “Influence of side wall expansion angle and Swirl generator on flow pattern in a model combustor calculated with model, ”International Journal of Thermal Sciences,43 2004 pp.901-914.
[19] GCTool Version 2.4 Release Date: July 2001, ANL.