| 研究生: |
陳冠宇 Chen, Guan-Yu |
|---|---|
| 論文名稱: |
電子束帶寬對激發表面電漿子效應研究模擬 Simulation Studies of Electron Beams Bandwidths Effects on Surface Plasmon Excitations |
| 指導教授: |
藍永強
Lan, Yung-Chiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 84 |
| 中文關鍵詞: | 表面電漿子 、電子束 、PIC-FDTD。 |
| 外文關鍵詞: | surface plasmon excitation, electron beam, PIC method |
| 相關次數: | 點閱:98 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
電子束激發表面電漿子能夠輕易的調整所激發的表面電漿子頻率與強度,遠比光激發表面電漿子方便,有較多的應用性,因此需要對電子束激發表面電漿子的情形做討論。
本論文探討利用PIC-FDTD的數值模擬方式來模擬利用電子束來激發IMI結構的表面電漿子並且分析激發的表面電漿子是否與理論相符合,同時,也改變電子束的操作頻率與電子束能量來觀察表面電漿子的激發效果。並由模擬結果發現電子束激發表面電漿子有一段操作範圍。另外,本論文也利用模擬的方式來得到SRR週期性結構的色散曲線圖。
In this paper, we used the finite-difference-time-domain (FDTD) method to investigate the excitation of surface plasmon polaritons (SPPs) by electron beam The dielectric function of metal is described by Drude model. The simulation method for the interaction between electromagnetic fields and electrons is particle-in-cell finite-difference-time-domain (PIC-FDTD). The excitations of surface plasmon polaritons by parallel electron beam. We propose the simulation result for excitation SPPs of insulator-metal-insulator (IMI) structure by electron beam. The result of numerical calculation agree well with the analytical theory. We also show that there is an operating region for parallel excited SPPs. When the operating point is not the intersection of SPPs dispersion curves and electron beam dispersion curves, we still can excite SPPs. The intensity of parallel excited SPPs will decrease when the operating point far from intersection.
[1] J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. Vol. 47, No. 11, pp. 2075-2084 (1999).
[2] S. A. Maier, Plasmonics: Fundamentals and Applications, Springer, USA, pp. 194-198(2007).
[3] 邱國斌、蔡定平,「金屬表面電漿簡介」,物理雙月刊,第廿八卷第二期,頁472-485(2006).
[4] 吳民耀、劉威志,「金屬表面電漿簡介」,物理雙月刊,第廿八卷第二期,頁486-487(2006).
[5] A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Physics. Reports. NO, 408, pp. 138-140(2005).
[6] R. Heinz, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Springer, USA, pp. 73-90(1986).
[7] K. Yee, “Numerical of initial boundary value problems involving Maxwell’s equations,” IEEE Trans. Antennas Propagation. Vol. 14, No. 03, pp. 302-307(1966).
[8] A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Artech House, USA, pp. 51-105(2005).
[9] W. H. Yu, R. Mittra, T. Su, and Y. Liu, Parallel Finite-Difference Time-Domain Method, Artech House, USA, pp. 08-11(2006).
[10] VORPAL: http://www.txcorp.com/products/VORPAL/index.php
[11] C. K. Birdsall and A. B. Langdon, Plasma Physics via Computer Simulation, Taylor and Francis Group, USA, pp. 55-73(1991).
[12] F. J. Garcia de Abajo, “Optical excitations in electron microscopy,” Reviews of modern physics. Vol. 82, No. 01, pp. 209-275(2010).
[13] J. Zhou, M. Hu, Y. Zhang, P. Zhang, W. Liu and S. Liu, “Numerical analysis of electron-induced surface plasmon excitation using the FDTD method,” Journal of optics. Vol. 13, No. 03, pp. 35-41(2011).
[14] Y. M. Shin, J. K. So, K. H. Jang, J. H. Won, A. Srivastava, and G. S. Park, “Superradiant terahertz Smith-Purcell radiation from surface plasmon excited by counterstreaming electron beams,” Applied physics letters. Vol. 90, No. 03, pp. 1502-1504(2007).