| 研究生: |
黃修則 Huang, Hsiu-Tze |
|---|---|
| 論文名稱: |
低放射性廢棄物處置場址溶質傳輸之研究-以蘭嶼處置場為例 Radionuclide Migration in Low-level Radioactive Waste Disposal at Lan-Yu Site |
| 指導教授: |
李振誥
Lee, Cheng-Haw |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 110 |
| 中文關鍵詞: | 低放射性廢棄物處置場 、核種傳輸 、TOUGH2 、蘭嶼 |
| 外文關鍵詞: | low-level radioactive waste disposal sites, radionuclide transport, TOUGH2, Lan-Yu |
| 相關次數: | 點閱:98 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要根據蘭嶼處置場之地形、地質構造、水文地質參數及地球物理探勘等資料建立水文地質概念模型,並且利用多相流地下水質能傳輸模式TOUGH2,針對研究區之地下水流與核種傳輸情形的結果進行探討分析。本研究分別將近場處置窖工程障壁和遠場地質圈進行核種傳輸模擬,並以蘭嶼處置場作為案例,先瞭解在處置設施洩漏情況下,核種於裂縫處外滲傳輸行為,並配合模擬處置場周圍地下水流場,於遠場模擬設立七種不同洩漏案例,評估核種洩露後於地質圈之影響範圍及程度,以作為後續處置場安全評估以及監測設置的參考。
近場模擬案例結果顯示,核種以1 kg/s速率從廢料桶滲漏後,經由處置窖裂隙至地下水位面之路徑距離為0.5公尺,傳輸時間約為10小時,由於到達時間甚短,各核種到達地下水位面時之濃度差異不超過1%。遠場模擬部分,為瞭解各不同半衰期核種最終濃度之差異,模擬蘭嶼處置場存放之11種核種於處置場中央以1 kg/s速率發生洩漏,結果顯示蘭嶼處置場上層水力傳導係數較大之珊瑚礁岩層,成為核種傳輸之主要途徑,傳輸方向與地下水流向一致,由處置場往東南方海邊流動,核種大約在洩漏後第50天到達海邊,傳輸距離約為250m。各核種到達海邊時之最終濃度不盡相同,是由於半衰期而影響核種的最終濃度,半衰期越長之核種,最終濃度越高,故最終濃度11種核種前三高依序為Cs-137、Sr-90與Co-60,而最終濃度分別為初始濃度的4.42%、4.38%與4.35%。
假設核種於處置場北、中、南位置,同時以核種1kg/s發生洩漏,核種到達範圍約為處置場東方至東南方海邊,總長約為600公尺。模擬成果可知,處置場南北位置,由於地下水流方向不同,導致北端與南端核種核種流嚮往東與東偏南45度,因此,未來為涵蓋可能洩漏產生,如處置場未來有監測井設置之需求,至少須設置處置場東方及東偏南60度兩處監測井。此外,當考慮處置場發生全區性核種洩漏,核種於洩漏60天後,此時最高濃度出現在東偏南60度海邊,且由於全面性洩漏導致最高濃度大幅增加,此時約為初始濃度的50%,另外,為瞭解不同洩漏量所造成衝擊,核種以1kg/s、0.1kg/s、0.01kg/s之不同洩漏量發生洩漏時,最高濃度分別為初始濃度24%、2.43%、0.31%,顯示不同之核種洩漏量,其到達海邊時間不同,洩漏量愈小,愈晚到達海邊。
The purpose of this research is to describe the groundwater flow and migration of nuclides for low-level radioactive waste disposal in Lan-Yu, Taiwan. The numerical program, TOUGH2, was applied in the site to establish a conceptual model which is based on the collected data such as terrain, geological structure and hydrological parameters etc. Several scenarios with near-field and far-field cases in Lan-Yu site were supposed to simulate the migration of nuclides in order to understand the influenced range and distribution of concentration.
The results in near-field case showed that because the depth of groundwater is only 0.5m, under 1kg/s leakage rate the concentration of different nuclides took almost the same time to reach groundwater. In far-field cases, the limestone layer was the major migration path of nuclide, and it thus reduced that the transport direction was the same with groundwater direction. The half-life of radionuclide affected the final concentration when it reached the boundary in simulation cases. As 11 simulation nuclides were assigned to release, under 1kg/s leakage rate results indicated that Cs137, Sr90 and Co60 had the higher final concentration because of their long half-life, and thus the ratio of final and initial concentration are 4.42%, 4.38% and 4.35%, respectively.
Results also showed that as radionuclide was leaked under rate 1kg/s in three divisions with north, central and south of Lan-Yu site, the radionuclide transport direction in north division is along the east direction and the directions in central and south divisions are along southeast direction. It implied that there should be established the monitoring wells in the east and southeast of Lan-Yu site. Furthermore, if complete leakage happened in whole site under the leakage rate 1kg/s, the highest ratio of maximum and initial concentration is 50% as arrived at sea boundary , and the flow direction is along S30 E. Moreover, as compared among leakage rate 1kg/s 0.1kg/s and 0.01kg/s, the ratios of maximum and initial concentration are 24%, 2.43% and 0.31%, respectively. It indicated the leakage rate is a magnificent factor in influencing the behavior of radionuclide transport.
1. Abelin. H., Neretnieks, I., Tunbrant, S., and Moreno, L., 「Migration in a Single Fracture: Experiment Results and Evaluation,」 Final report, Stripa Project, Tech. Rep. 55-03, Swed. Nucl.Ful and Waste Manage. Co.(SKB), Stochholm. (1985)
2. Ahn, J., Furuhama, Y., Li, Y., and Suzuki, A., 「Analysis of Radionuclide Transport Through Fracture Networks by Percolation Theory,」 Journal of Nuclear Science, Vol. 28, No. 5, pp. 433-491 (1991).
3. Ando.Kenichi, A. Kostner and S. P. Neuman, 「Stochastic continuum modeling of flow and transport in a crystalline rock mass: Fanay-Augres, France, revisited,」 Hydrogeology Journal., Vol. 11, pp. 521-535 (2003).
4. Barenblatt, G.E., Zheltov, I.P., and Kochina, I.N., 「Basic Concepts in the Theory of Homogeneous Liquids in Fissured Rocks,」 Journal of Appl Math Mech, Vol.24, No.5, pp. 1286-1303 (1960).
5. Bear, J., 「Dynamics of Fluids in Porous Media.」 Elsevier, New York, (1972).
6. BEARD,Dynamics of Fluids in porous Media,American Elsevier Publishing Company,Inc.,NewYork,N.Y.(1972),reprinted by Dover Publications,Inc (1988).
7. Berkowitz, B., 「Analysis of fracture network connectivity using percolation theory,」 Mathematical Geology, Vol. 27, No. 4, pp. 467-483 (1995).
8. Bibby, R., 「Mass Transport of Solutes in Dual-porosity Media,」 Water Resource Research, Vol. 17, pp. 1071-1075(1981).
9. Berkowitz, Brain, Jacob Bear, and Carol Breasted, 「Continuum models for contaminant transport in fractured porous formations,」 Water Resources Research, Vol. 24, No. 8, pp. 1225-1236 (1988).
10. Botros, F. E., A. E. Hassan, D. M. Reeves, and G. Pohll, On mapping fracture networks onto continuum, Water Resour. Res., 44, W08435, doi:10.1029/2007WR006092 (2008).
11. Cacas, M.C. J.M. Daniel, and J. Letouzey, 「Nested geologicalmodelling of naturally fractured reservoirs,」 Petroleum Geoscience, Vol. 7 pp. S43-S52 (2001).
12. Chen, R.H., Lee, C.H., and Chen G.S., 「Evaluation of Transport of Radioactive Contaminant in Fractured Rock,」 Environmental Geology, Vol. 41, pp. 440-450 (2001).
13. Delay, F., Kaczmaryk, A., and Ackerer, P., 「Inversion of interference hydraulic pumping tests in both homogeneous and fractal dual media,」 Advances in Water Resources, Vol. 30, pp. 314-334 (2007).
14. Deng, H., Z. Dai, A. Wolfsberg, Z. Lu, M. Ye, and P. Reimus, Upscaling of reactive mass transport in fractured rocks with multimodal reactive mineral facies, Water Resour. Res., 46, W06501, doi:10.1029/2009WR008363 (2010).
15. Dershowitz, W, Lee, G., Geler, J., Foxford, T., La, Pointe and Thomas, P., 「A FracMan: interactive discrete feature data analysis, geometric modeling, and exploration simulation, version 2.6.User documentation,」 Golder's Associates, Seattle, Washington (1998).
16. Dershowitz, W., S., and Miller, I., 「Dual Porosity Fracture Flow and Transport,」 Geophys Res Lett, Vol. 22, pp. 1441-1444 (1995).
17. Donald M. R., D. A. Benson, and M. M. Meerschaert, 「Transport of conservative solutes in simulated fracture networks: 2. Ensemble solute transport and the correspondence to operator-stable limit distributions」, Water Resource Research 44, W05410, doi:10.1029/2007WR006858 (2008).
18. Dreuzy, J. R., Davy, P., and Bour, O., 「Hydraulic Properties of Two Dimensional Random Fracture Networks Following A Power Law Distribution 1.EffectiveConnectivity,」 Water Resource Research, Vol. 37, No. 8, pp. 2065-2078 (2001).
19. Englman, R. Y., Gur, Y., and Jaeger, Z., 「Fluid Flow Through A Crack Network in Rocks,」 Journal of Applied Mechanic, Vol. 50, pp. 707-711 (1983).
20. Frampton. A., and V. Cvetkovic, 「Significance of injection modes and heterogeneity on spatial and temporal dispersion of advecting particles in two-dimensional discrete fracture networks」, Advances in Water Resource, doi:10.1016/j.advwatres.2008.07.010, (2008).
21. Fransson, A., 「A case study to verify methods for estimating transmissivity distributions along boreholes,」 Hydrogeology Journal, Vol. 15, pp. 307-313 (2007).
22. Golden, J. M., 「Percolation Theory And Models of Unsaturated Porous Media,」 Water Resource Research, Vol. 16, No. 1, pp. 201-209 (1980).
23. Gorby Y.A, 「Microbial Reduction of Cobalt(III)EDTA(-) in the presence and Absence of Manganese(IV) Oxide 「 Environmental Science & Technology ,Vol. 32, pp. 244-250 (1998).
24. Granet, S., P. Fabrie , P. Lemonnier and M. Quintard, 「A two-phase f low simulation of a fractured reservoir using a new fissure element method,」 Journal of Petroleum Science and Engineering, Vol. 32, pp. 35- 52 (2001).
25. Hadermann, J., and Heer, W. 「The Grimsel (Switzerland) Migration Experiment: Integrating Field Experiments, Laboratory Investigations And Modelling,」 Journal of Contaminant Hydrology, Vol. 21, pp. 87-100 (1996).
26. Halihan T, Love A, Sharp JM 「Identifying connections in a fractured rock aquifer using ADFTs,」 Ground Water, Vol. 43, No. 3, pp. 327-335 (2005).
27. Huyakorn, P., S., Lester B., H., and Faust, C., R., 「Finite Element Techniques forModeling Groundwater Flow in Fractured Aquifers,」 Water Resource. Research, Vol. 19, No. 4, pp. 1019-1035 (1983).
28. Iwai, K., 「Fundamental Studies of Fluid Flow Through a single fracture,」 Ph.D. Dissertation, University of California, Berkeley (1976).
29. Johnson, J., and S. R. Brown, 「Experimental mixing variability in intersecting natural fractures,」 Geophys. Res. Lett., Vol. 28, No. 22, pp. 4303-4306 (2001).
30. Kelly E.J, 」Lysimeter Studies to investigate the Leaching of Am-241 from Low-Level Radioactive-Waste,」 Journal of Alloys and Compounds, Vol. 271, pp. 227-230 (1998).
31. Le Borgne, T., Bour O., Riley, M.S., Gouze P., Pezard P.A., Belghoul A., Lods G., Le Provost R., Greswell R.B., Ellis P.A.,Isakov E., Last B.J., 「Comparison of alternative methodologies for identifying and characterizing preferential flow paths in heterogeneous aquifers,」 Journal of Hydrology, Vol. 345, pp. 134-148 (2007).
32. Lee, C.H., Deng, B.W., and Chang, J.L., 「A Continuum Approach for Estimating Permeability in Naturally Fractured Rocks,」 Engineering Geology, Vol. 39, pp. 71-85 (1995).
33. Lin, B. S., and Lee, C.H. 「Percolation and Dispersion of Mass Transport in Saturated Fracture Network,」 Water Resource Management, Vol. 12, pp. 409-432 (1998).
34. Lin, B. S., Lee, C.H., and Hwang, H.H., 「Analysis of Mass Transport Through Fractured Networks using Percolation Theory Approach,」 Journal of The Chinese Institute of Environment Engineers, Vol. 7, No. 1, pp. 1-11 (1997).
35. Lin, B. S., Lee, C.H., and Yu, J.L., 「Analysis of Groundwater Seepage of Tunnels in Fracture Rock,」 Journal of The Chinese Institute of Environment Engineers, Vol. 23, No. 3, pp. 155-160 (2000).
36. Long, J.C.S., Remer, C.R., and Witherspoon, P.A., 「The Relationship of the Degree of Interconnection to Permeability of Fracture Networks,」 Water Resource Research, Vol. 90, pp. 3087-3098 (1985).
37. Long, J.C.S., Remer, C.R., Wilsion, C.R., and Witherspoon, P.A., 「Porous Media Equivalents for Networks of Discontinuous Fractures,」 Water Resource Research, Vol. 18, No. 3, pp. 645-648 (1982).
38. Martinez-Landa L, Carrera J., 「An analysis of hydraulic conductivity scale effects in granite Full-scale Engineered Barrier Experiment (FEBEX),」 Grimsel, Switzerland, Water Resour. Res., Vol. 41, No. 3, (2005).
39. McLaren, R. G., Forsyth, P. A., Sudicky, E. A., VanderKwaak, J. E., Schwartz, F. W., and Kessler, J. H., 「Flow and transport in fractured tuff at Yucca Mountain: numerical experiments on fast preferential flow mechanisms,」 Journal of Contaminant Hydrology, Vol. 43, pp. 211-38 (2000).
40. Moench, Allen F., 「Double-Porosity Models for a Fissured Groundwater Reservoir with Fracture skin,」 Water Resource Research, Vol. 20, No. 7, pp. 831-846 (1984).
41. Mourzenko, V. V., F. Yousefian, B. Kolbah, J,-F. Thovert, and P. M. Adler, 「Solute transport at fracture intersections,」 Water Resource Research. Vol. 38, No. 1, 1000, doi:10.1029/2000WR000211 (2002).
42. Moussa K., Rachid A., Benoit N., and Michel Q., 「Matrix-fracture exchange in a fractured porous medium: stochastic upscaling,」 C. R. Mecanique, Vol. 332, pp. 679-686 (2004).
43. Nakaya, S. and K. Nakamura, Percolation conditions in fractured hard rocks: A numerical approach using the three‐dimensional binary fractal fracture network (3D‐ BFFN)model, J. Geophys. Res., Vol. 112, B12203, doi:10.1029/2006JB004670 (2007).
44. Nathalie V. M., David, J., Martin, H., Simon, L., Philippe, A. P., and Gérard, L., 「Characterizing flow zones in a fractured and karstified limestone aquifer through integrated interpretation of geophysical and hydraulic data,」 Hydrogeology Journal, Vol. 15, pp. 225-240 (2007).
45. Nguyen, T. S., Borgesson, L., Chijimatsu, M., Rutqvist, J., Fujita, T., Hernelind, J., Kobayashi, A., Ohnishi, Y., Tanaka, M., and Jing L., 「Hydro-mechanical Response of A Fractured Granitic Rock Mass to Excavation of A Test Pit-The Kamaishi Mine Experiment in Japan,」 International Journal of Rock Mechanics and Mining Sciences, Vol. 38, No. 1, pp. 79-94 (2001).
46. Oda, M., 「Permeability Tensor for Discontinuous Rock Masses,」 Geotech, Vol. 35, pp. 483-495 (1985).
47. Pruess, K. TOUGH User's Guide, Nuclear Regulatory Commission Report NUREG/CR-4645; also: Lawrence Berkeley Laboratory Report LBL-20700, Berkeley, CA (1987).
48. Pruess, K., Oldenburg, C. M. and Moridis, G., 「TOUGH2 User's Guide, Version 2.0,」 Lawerence Berkeley National Laboratory Report LBNL 43134, November (1999).
49. Roubinet, D., J.‐R. de Dreuzy, and P. Davy, Connectivity‐ consistent mapping method for 2 ‐ D discrete fracture networks, Water Resour. Res., 46, W07532, doi:10.1029/2009WR008302 (2010).
50. Samardzioska T. and V. Popov, 「Numerical comparison of the equivalent continuum, non-homogeneous and dual porosity models for flow and transport in fractured porous media,」 Advances in Water Resource, Vol. 28, pp. 235-255 (2005).
51. Sawada, A., Uchida, M., Shimo, M., Yamamoto, H., Takahara, H., and Doe, T. W., 「Non-sorbing Tracer Migration Experiments in Fractured Rock at The Kamaishi Mine, Northeast Japan,」 Eng Geology, Vol. 56, pp. 75-96 (2000).
52. Schwartz, F. W., and Smith, L., 「A continuum Approach for ModelingMass Transport in Fractured Media,」 Water Resource Research, Vol. 19, No. 4, pp. 959-969 (1988).
53. Schwartz, F. W., L. Smith, and A. S. Crowe, 「A stochastic analysis ofmacroscopic dispersion in fractured media,」 Water Resour. Res., Vol. 19, No. 5, pp. 1253-1265 (1983).
54. Smith, L., and F. W. Schwartz, 「An analysis on the influence of fracture geometry on mass transport in fractured media,」 Water Resour. Res., Vol. 20, No. 9, pp. 1241-1252 (1984).
55. Stockman, H. W., J. Johnson. and S. R. Brown, Mixing at fracture intersections: Influences of channel geometry and the Reynolds and Peclet numbers ,Geophys. Res. Lett., Vol. 28, No, 22, pp. 4299-4302 (2001).
56. Surrette M., D. M. Allen and M. Journeay, 「Regional evaluation of hydraulic properties in variably fractured rock using a hydro-structural domain approach,」 Hydrogeology Journal, Vol. 16, pp. 11-30 (2008).
57. Vilks, P., and Baik, M. H., 「Laboratory Migration Experiments with Radionuclides And Natural Colloids in A Granite Fracture,」 Journal of Contaminant Hydrology, Vol. 47, pp. 197-210 (2001).
58. Vilks, P., and Baik, M. H., 「Laboratory Migration Experiments with Radionuclides And Natural Colloids in A Granite Fracture,」 Journal of Contaminant Hydrology, Vol. 47, pp. 197-210 (2001).
59. Vilks, P., Frost, L. H., and Bachinski, D. B. 「Field-scale Colloid Migration Experiments in A Granite Fracture,」 Journal of Contaminant Hydrology, Vol. 26, pp. 203-214(1997).
60. Viswanathan H.S, 」A Reactive Transport Model of Neptunium Migration from the potential Repository at Yucca Mountain,」 Journal of Hydrology, Vol. 209, pp. 251-280 (1998).
61. Wang, J.S.Y., Trautz, R.C., Cook, P.J., Finsterle, S., James, A.L., and Birkholzer, J., 「Field Tests and Model Analyses of Seepage into Drifts,」 Journal of Contaminant Hydrology, Vol. 38, pp. 323-347 (1999).
62. Warren, J.E., and Root, P.J., 「The Behavior of Naturally Fractured Reservoirs,」 Trans. Soc. Pet. Eng. AIME, Vol. 3, No. 3, pp. 245-255 (1963).
63. Xu. C., P. A. Dowd, K. V. Mardia, and R. J. Fowell., 「A Connectivity Index for Discrete Fracture Networks,」 Mathematical Geology, Vol. 38, No. 5, pp. 611-634 (2006).
64. Zhang, X., and Sanderson, D. J., 「Numerical Modelling of the Effects of Fault Slip on Fluid Flow around Extensional Faults,」Journal of Structural Geology, Vol. 18, pp. 108-119 (1996).
65. Zhang, X., Harkness, M., and Last, N. C., 「Evaluation of Connectivity Charaecteristics of Naturally Jointed Rock Mass,」 Engineering Geology, Vol. 33, pp. 11-30 (1993).
66. Zimmerman, R. W., and Main, I. G., 「Hydromechanical Behaviour of Fractured Rocks,」 Mechanics of Fluid-Saturated Rocks, pp. 361-419 (2004).
67. Zimmerman, R.W., Chen, G., Hadgu, T., and Bodvarsson, G.S., 「A Numerical Dual-porosity Model with Semi-analytical Treatment of Fracture Matrix Flow,」 Water Resource. Research, Vol. 29, No. 7, pp. 2127-2137 (1993).
68. 中興顧問社,「蘭嶼放射性待處理物料儲存場地下水調查及地質調查工作報告」放射性待處理物料管理處(1987)。
69. 台灣電力公司核能廢料管理處委託原子能委員會核能廢料管理處,「我國用過核燃料長程處置計劃」,蘭嶼地質調查報告書(1991)。
70. 台灣電力公司,「低放處置設施功能模擬評估報告」(2010)。
71. 任中興,「蘭嶼放射性廢料儲存場地下水質分析及流向分佈研究」,行政院原子能委員會放射性待處理物料管理處(1990)。
72. 行政院原子能委員會放射性待處理物料管理處,「放射性廢料設施及其附近地區地下水流及水質傳輸模擬之研究」(1991)。
73. 余進利,「破裂面網路地下水流與污染物傳輸之研究」,博士論文,國立成功大學水利及海洋工程學系(1992)。
74. 李境和,「放射性廢棄物處置」第1-14頁(1990)。
75. 李振誥,「破碎岩體地下水流及污染傳輸模式之評選及應用於示範場址(一)-流動與傳輸特性及模式之研究」,原能會物管處委託研究報告(1992)。
76. 李振誥、陳榮華、林碧山,「正交破裂面傳輸模式運用於蘭嶼儲存場破裂安山岩體中污染物傳輸之研究」,中國環境工程學刊,第五卷,第二期第149-160頁(1995)。
77. 李振誥、陳昭旭,「隧道工程地下水探查技術與應用」,隧道工程地質探查技術研討會論文集第99-126頁(2000) 。
78. 李禎常,「破裂岩體地下水流與污染物平均傳輸統計分佈性質之研究」,碩士論文,國立成功大學資源工程學系(2004)。
79. 李禎常,「破裂岩體之地下水流與污染物傳輸之研究」,博士論文,國立成功大學資源工程學系(2011)。
80. 周家慧,「礁溪地區溫泉人工補註之研究」,碩士論文,國立成功大學資源工程學系(2009)。
81. 林宏奕,「破裂岩體優勢水流路徑之研究」,博士論文,國立成功大學資源工程學系(2009)。
82. 林碧山,「破裂岩體地下水滲流與溶質傳輸」,博士論文,國立成功大學資源工程學系(2000)。
83. 林碧山,「破裂面幾何參數對地下水中質點傳輸之研究」,碩士論文,國立成功大學資源工程學系(1993)。
84. 林碧山、李振誥、李禎常、林宏奕,「破裂岩體污染物傳輸性質之研究-以蘭嶼地區為例」,台灣水利,第53 卷,第1 期,第34-45頁(2005) 。
85. 倪川田,「地下水污染物輸送有限元素模式之研究」台灣大學農業工程研究所碩士論文(1988)。
86. 徐年盛、郭振泰、蔡丁貴、劉格非、江崇榮、黃振鶯、張德鑫、張修齊,「放射性廢料設施及其附近地區地下水流及水質傳輸模擬之研究」,放射性核種遷移研討會論文集,第21-42頁(1994)。
87. 徐年盛、郭振泰、朱文生、王曉中、江崇榮、張德鑫、吳呈懋、傅大章、高蔚明,「放射性廢料及附近地區地下水流水質傳輸模擬之研究(一) 」,行政院原子能委員會委託台大土木工程研究所建教合作計畫(1991)。
88. 偉志探勘股份有限公司,「蘭嶼儲存場第二期工程鑽探與現地試驗報告書」(1988)。
89. 郭明錦、江崇榮、黃振鶯,「放射性廢料設施附近地下水示蹤/抽水試驗和含水層特性描述之研究」,放射性待處理物料管理處(1992)。
90. 陳榮華,「岩體破裂面統計特性分析與污染物傳輸之研究」,碩士論文,國立成功大學資源工程學系(1995)。
91. 陳榮華,「破裂安山岩體放射性核種傳輸之研究」,博士論文,國立成功大學資源工程學系(2001)。
92. 陳崇希,「地下水動力學原理-地下水溶質運移理論及模型」,地質出版社(1986)。
93. 黃崇琅、李振誥,「應用雙孔隙模式於具膚表效應破裂含水層水力性質估計之研究」,第七屆大地工程學術研究討論會論文集,臺北,第 1113-1120頁(1997)。
94. 詹新甫、莊文星、黃鑑水,「蘭嶼地區儲存場放射性待處理物料處存地質環境調查」(1985)。
95. 鄒龍銀,「蘭嶼貯存場含水層傳輸參數之研究-延散係數及遲滯係數」,碩士論文,國立成功大學礦冶及材料科學研究所(1993)。
96. 肇基工程鑽採試驗有限公司,財團法人中興工程顧問社代辦行政院原子能委員會放射性待處理物料管理處,「蘭嶼放射性廢料貯存場地下水調查工作報告」(1987)。
97. 劉振宇、譚義績、劉文忠、王淑美、葉正霖、李煌隆、王銘農,「地化模式應用於地下水中放射性核種遷移之研究」,行政院原子能委員會八十二年度專題研究計劃成果發表會論文集,第207-253頁(1993)。
98. 劉烽收,「蘭嶼貯存場場區表層滲透性質空間分佈之研究」,成功大學資源工程研究所碩士論文(1996)。
99. 蔡惠峰、郭嘉真、梁興傑、葉弘德、李鏡和、陳文迫、林善文,「海水入侵對地下水流速率與核種傳輸之影響」,第九屆水利工程研討會論文集,第203-210頁(1998)。
100. 羅俊光,「放射性核種在地層中遷移之阻置因子審查技術」,原能會物管處委託研究報告(1995)。