| 研究生: |
廖書賢 Liao, Shu-Hsien |
|---|---|
| 論文名稱: |
以電動力學為基礎發展樣本前處理晶片且應用在定點照護檢測 Development of Sample Pre-treatment Chip Based on Electrokinetics for Point-of-care Testing |
| 指導教授: |
張憲彰
Chang, Hsien-Chang |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 生物醫學工程學系 Department of BioMedical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 英文 |
| 論文頁數: | 108 |
| 中文關鍵詞: | 介電泳場流分選 、電熱力操控 、毛細管式介電泳晶片 、血球分離 |
| 外文關鍵詞: | Dielectrophoresis-field-flow fraction, electrothermal switching, capillary dielectrophoretic chip, blood cell separation |
| 相關次數: | 點閱:97 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著科技的進步,人們對於飲食需求和身體健康愈來愈重視,因人們生命長壽和飲食豐盛,卻衍生了糖尿病、高血脂、高尿酸等文明病的產生。為預防各種疾病的發生,定期作健康檢查變成相當地重要。然血液為臨床檢體時,因是由各種物質所組成的混合物,故需先進行前處理以純化樣本,唯傳統前處理的方法(離心、培養、過濾等)得花費大量的時間、人力、成本,以及至少需抽取一管的靜脈血,才能得到較為準確的檢測結果。為了解決這些問題,我們以電動力學為基礎發展了四種樣本前處理晶片分述如下:
(1) 三維介電泳場流分選晶片,概念乃藉z方向的介電泳梯度同時分離多種粒子。交錯式電極陣列不只能夠將粒子集中成單一列排列,且還能以延遲效應來拉開粒子之間的間隙。傾斜式電極的設計乃為連續且精準的分離不同大小的粒子,藉由不同z方向的介電泳梯度。四種不同大小的粒子(2、3、4、6um)藉由介電泳場流分選原理,當給予6.5 Vp-p及0.6uL/min的流量,可被精準分離到四個不同的分離位置,最後以血球細胞和白色念珠菌為成功實施例,証明此晶片能力。
(2) 電熱力操控晶片,乃藉由流道兩邊之側向電極所產生的電熱力,達到連續式操控粒子於高導電溶液中,証明了電熱力流具有高效率的粒子操控功能和寬的溶液(0.14-1.6 S/m)操控範圍,透過兩邊側向電極的操控其最大能夠達到100um的偏移量於高導電溶液中(1.6 S/m)。粒子的偏移與電壓和溶液導電度成正比,故可透過調整電壓來達到精準的粒子操控。在生物的應用,成功地操控紅血球、KU-812細胞和酵母菌於相對的位置,本晶片能結合電熱力操控和介電泳捕捉功能以達到可控制的單粒子操控,未來更可應用在單細胞分析和檢測。
(3) 具即時性血球和血漿分離晶片,主要藉由毛細力和介電泳力從全血中分離血球和血漿,晶片大小(1.4 × 2.6 cm)具微小化特性,且晶片手工封裝僅1分鐘內即可完成。另外,也由實驗結果得到與模擬結果相近的最佳化電極設計,証明此晶片非但能於血容比10-50%之血液樣本下,在30秒內達90%以上的分離效率,但若在更高的高血容比(約60%)下,其分離效率亦達到60%。其它的優點是,此毛細管式介電泳晶片能夠輕易結合電化學檢測,也適合應用在免疫檢測和其它電化學檢測如較長反應時間的物質例如膽固醇檢測。
(4) 三維毛細管式介電泳晶片,其開發乃為改良二維晶片的缺點,我們成功地縮短血球分離的時間(~10秒)和增強血球分離效率。以介電泳將血球分離後量測血中的血糖,其量測的線性範圍可達50-550 mg/dl,且得高線性回歸值(R^2 = 0.996)。此晶片也成功地結合電化學式血糖檢測,未來將可應用在糖尿病新的檢測項上,此晶片不但能夠降低血球的干擾以增加電流響應,且亦能改善血比容的干擾以降低檢測誤差。
這些新型樣本前處理的方法可以應用在微型流式細胞儀、電化學檢測、免疫檢測,以提供快速且可攜式的新型醫療器材並應用在定點照護檢測上。
People are paying more and more attention for dietary needs and body health with advances in technology. Because people live longer and rich diet cause a variety of modern diseases (diabetes mellitus, hyperlipidemia, hyperuricemia, etc.), regular health check becomes very important for disease prevention. However, the clinical sample of blood is a complex mixture, which must undergo a variety of sample pre-treatment methods (centrifugation, culture, Filtration, etc.) to purify before analysis and testing. Furthermore, the conventional method requires a large amount of time, energy, cost, and at least extract a tube of venous blood to obtain detection results. To solve these problems, we develop four different chip design for sample pre-treatment based on electrokinetics for point-of-care testing (POCT).
(1) 3D dielectrophoresis-field flow fraction (DEP-FFF) chip, a new 3D DEP-FFF concept to achieve the precise separation of multiple particles by using an AC DEP force gradient in the z-direction. The interlaced electrode array not only focused the particles into a single stream of particles on the same starting position, but it also increased the spacing between each particle by the retardation effect to reduce particle aggregation. An inclined electrode was also designed to continuously and precisely separate different sizes of particles based on different magnitudes of DEP force at different positions in the z-direction of the DEP gate. Four different sizes of polystyrene beads (2, 3, 4, and 6um) were precisely sized fractionation to be four particle streams based on their different threshold DEP velocities that were induced by the field gradient in the z-direction, when a voltage of 6.5 Vp–p was applied at a flow rate of 0.6uL/min. We also performed several successful examples with blood cells and Candida albicans separation to demonstrate the ability of the chip.
(2) Electrothermal switching chip, electrothermal fluid flow generated by using two sides of lateral electrode pair to achieve continuous particle manipulation in the high conductivity solution. We demonstrated that electrothermal fluid flow is highly effective for particle manipulation with a wide range of conductivity solution (0.14-1.6 S/m), the maximum offset distance can reach approximately 100um by using two sides of lateral electrode pair to control the particle switch in the high conductivity solution (1.6 S/m). The offset distance of particle is proportional to the voltage and conductivity solution, which can be precise controlled by adjusting the voltage for particle manipulation. In biological application, the red blood cells, KU-812 cells, and yeast cells were successful switched at desired position by electrothermal fluid flow. The proposed chip enables combine with electrothermal switching and DEP trapping to achieve controllable single particle manipulation for single cell analysis and detection.
(3) Real-time blood cell and plasma separation chip, the chip can separate blood cells and plasma from whole blood by using capillary and negative dielectrophoretic forces. The chip size (1.4 × 2.6 cm) is miniaturized and the manual process of chip assembly is simple and rapid (within 1 min). In addition, the simulation results were shown to agree with the experimental results in order to obtain the optimal electrode design for blood cell separation. The chip not only achieved a separation efficiency of 90% within 30 sec when the hematocrit is in the range of 10-50%, but it is also capable of performing blood cell separation with a separation efficiency of 60% at high hematocrit (approximately 60%). An additional advantage of capillary dielectrophoretic chip is easy integrates with electrochemical detection. The proposed chip is suitable for application in immunosensor and other electrochemical sensor with detection substance of longer reaction time such as cholesterol detection.
(4) 3D capillary dielectrophoretic chip, the chip is developed to improve the disadvantage of 2D capillary dielectrophoretic chip. The 3D chip successfully short separation time with blood cell separation (approximately 10 sec) and enhance the separation efficiency from whole blood. The blood glucose measurement following blood cell separation from whole blood (hct = 40%) responds linearly to glucose concentrations of 50-550 mg/dl (R^2 = 0.996). Therefore, the 3D capillary dielectrophoretic chip successfully combines with the electrothermal blood glucose measurement to apply new detection method in diabetes. The results show that the chip not only can reduce blood cell interference to enhance the current response, but also can improve the hematocrit interference to decrease the detection error.
These novel methods of sample pretreatment can be applied in the microflow cytometry, electrochemical detection, immunosensor to prove rapid and portable medical devices for point-of-care testing.
Adams, J.D., Kim, U., Soh, H.T., 2008. Multitarget magnetic activated cell sorter. Proceedings of the National Academy of Sciences of the United States of America 105(47), 18165-18170.
Aran, K., Fok, A., Sasso, L.A., Kamdar, N., Guan, Y., Sun, Q., Undar, A., Zahn, J.D., 2011. Microfiltration platform for continuous blood plasma protein extraction from whole blood during cardiac surgery. Lab on a Chip 11(17), 2858-2868.
Bhagat, A.A., Hou, H.W., Li, L.D., Lim, C.T., Han, J., 2011. Pinched flow coupled shear-modulated inertial microfluidics for high-throughput rare blood cell separation. Lab on a Chip 11(11), 1870-1878.
Bohme, P., Floriot, M., Sirveaux, M.A., Durain, D., Ziegler, O., Drouin, P., Guerci, B., 2003. Evolution of analytical performance in portable glucose meters in the last decade. Diabetes Care 26(4), 1170-1175.
Braff, W.A., Pignier, A., Buie, C.R., 2012. High sensitivity three-dimensional insulator-based dielectrophoresis. Lab on a Chip 12(7), 1327-1331.
Cao, J., Cheng, P., Hong, F., 2008. A numerical analysis of forces imposed on particles in conventional dielectrophoresis in microchannels with interdigitated electrodes. Journal of Electrostatics 66(11-12), 620-626.
Ceylan Koydemir, H., Kulah, H., Ozgen, C., Alp, A., Hascelik, G., 2011. MEMS biosensors for detection of methicillin resistant Staphylococcus aureus. Biosensors & Bioelectronics 29(1), 1-12.
Chang, H.C., Yeo, L.Y., 2010. Electrokinetically driven microfluidics and nanofluidics. Cambridge University Press, Cambridge; New York.
Chen, D.F., Du, H., 2006. Simulation studies on electrothermal fluid flow induced in a dielectrophoretic microelectrode system. Journal of Micromechanics and Microengineering 16(11), 2411-2419.
Chen, J., Li, J., Sun, Y., 2012. Microfluidic approaches for cancer cell detection, characterization, and separation. Lab on a Chip 12(10), 1753-1767.
Cheng, I.F., Chang, H.C., Hou, D., 2007. An integrated dielectrophoretic chip for continuous bioparticle filtering, focusing, sorting, trapping, and detecting. Biomicrofluidics 1(2), 21503.
Cheng, I.F., Froude, V.E., Zhu, Y.X., Chang, H.C., 2009. A continuous high-throughput bioparticle sorter based on 3D traveling-wave dielectrophoresis. Lab on a Chip 9(22), 3193-3201.
Chin, C.D., Linder, V., Sia, S.K., 2012. Commercialization of microfluidic point-of-care diagnostic devices. Lab on a Chip 12(12), 2118-2134.
Chmela, E., Tijssen, R., Blom, M., Gardeniers, H., van den Berg, A., 2002. A chip system for size separation of macromolecules and particles by hydrodynamic chromatography. Analytical Chemistry 74(14), 3470-3475.
Choi, S., Song, S., Choi, C., Park, J.K., 2009. Microfluidic self-sorting of mammalian cells to achieve cell cycle synchrony by hydrophoresis. Analytical Chemistry 81(5), 1964-1968.
Di Carlo, D., Edd, J.F., Irimia, D., Tompkins, R.G., Toner, M., 2008. Equilibrium separation and filtration of particles using differential inertial focusing. Analytical Chemistry 80(6), 2204-2211.
Ding, X., Shi, J., Lin, S.C., Yazdi, S., Kiraly, B., Huang, T.J., 2012. Tunable patterning of microparticles and cells using standing surface acoustic waves. Lab on a Chip 12(14), 2491-2497.
Durr, M., Kentsch, J., Muller, T., Schnelle, T., Stelzle, M., 2003. Microdevices for manipulation and accumulation of micro- and nanoparticles by dielectrophoresis. Electrophoresis 24(4), 722-731.
Franke, T., Abate, A.R., Weitz, D.A., Wixforth, A., 2009. Surface acoustic wave (SAW) directed droplet flow in microfluidics for PDMS devices. Lab on a Chip 9(18), 2625-2627.
Fuh, C.B., 2000. Split-flow thin fractionation. Analytical Chemistry 72(7), 266A-271A.
Gallo-Villanueva, R.C., Jesus-Perez, N.M., Martinez-Lopez, J.I., Pacheco, A., Lapizco-Encinas, B.H., 2011. Assessment of microalgae viability employing insulator-based dielectrophoresis. Microfluidics and Nanofluidics 10(6), 1305-1315.
Gallo-Villanueva, R.C., Rodriguez-Lopez, C.E., Diaz-de-la-Garza, R.I., Reyes-Betanzo, C., Lapizco-Encinas, B.H., 2009. DNA manipulation by means of insulator-based dielectrophoresis employing direct current electric fields. Electrophoresis 30(24), 4195-4205.
Gao, J., Sin, M.L., Liu, T., Gau, V., Liao, J.C., Wong, P.K., 2011a. Hybrid electrokinetic manipulation in high-conductivity media. Lab on a Chip 11(10), 1770-1775.
Gao, J., Sin, M.L.Y., Liu, T., Gau, V., Liao, J.C., Wong, P.K., 2011b. Hybrid electrokinetic manipulation in high-conductivity media. Lab on a Chip 11(10), 1770.
Gascoyne, P.R.C., Noshari, J., Anderson, T.J., Becker, F.F., 2009. Isolation of rare cells from cell mixtures by dielectrophoresis. Electrophoresis 30(8), 1388-1398.
Gel, M., Kimura, Y., Kurosawa, O., Oana, H., Kotera, H., Washizu, M., 2010. Dielectrophoretic cell trapping and parallel one-to-one fusion based on field constriction created by a micro-orifice array. Biomicrofluidics 4(2), 022808.
Haeberle, S., Zengerle, R., 2007. Microfluidic platforms for lab-on-a-chip applications. Lab on a Chip 7(9), 1094-1110.
Han, K.-H., Frazier, A.B., 2008a. Lateral-driven continuous dielectrophoretic microseparators for blood cells suspended in a highly conductive medium. Lab on a Chip 8(7), 1079.
Han, K.H., Frazier, A.B., 2008b. Lateral-driven continuous dielectrophoretic microseparators for blood cells suspended in a highly conductive medium. Lab on a Chip 8(7), 1079-1086.
Ho, C.T., Lin, R.Z., Chang, H.Y., Liu, C.H., 2005. Micromachined electrochemical T-switches for cell sorting applications. Lab on a Chip 5(11), 1248-1258.
Hong, F.J., Cao, J., Cheng, P., 2011. A parametric study of AC electrothermal flow in microchannels with asymmetrical interdigitated electrodes. International Communications in Heat and Mass Transfer 38(3), 275-279.
Hu, X.Y., Bessette, P.H., Qian, J.R., Meinhart, C.D., Daugherty, P.S., Soh, H.T., 2005. Marker-specific sorting of rare cells using dielectrophoresis. Proceedings of the National Academy of Sciences of the United States of America 102(44), 15757-15761.
Huang, C.-T., Weng, C.-H., Jen, C.-P., 2011. Three-dimensional cellular focusing utilizing a combination of insulator-based and metallic dielectrophoresis. Biomicrofluidics 5(4), 044101.
Huang, Y., Wang, X.B., Becker, F.F., Gascoyne, P.R.C., 1997. Introducing dielectrophoresis as a new force field for field-flow fractionation. Biophysical Journal 73(2), 1118-1129.
Hwang, H., Han, D., Oh, Y.J., Cho, Y.K., Jeong, K.H., Park, J.K., 2011. In situ dynamic measurements of the enhanced SERS signal using an optoelectrofluidic SERS platform. Lab on a Chip 11(15), 2518-2525.
Jain, A., Munn, L.L., 2011. Biomimetic postcapillary expansions for enhancing rare blood cell separation on a microfluidic chip. Lab on a Chip 11(17), 2941-2947.
Julius, M.H., Masuda, T., Herzenbe.La, 1972. Demonstration that antigen-binding cells are precursors of antibody-producing cells after purification with a fluorescence-activated cell sorter. Proceedings of the National Academy of Sciences of the United States of America 69(7), 1934.
Jung, J.H., Kim, G.Y., Seo, T.S., 2011. An integrated passive micromixer-magnetic separation-capillary electrophoresis microdevice for rapid and multiplex pathogen detection at the single-cell level. Lab on a Chip 11(20), 3465-3470.
Kang, J.H., Krause, S., Tobin, H., Mammoto, A., Kanapathipillai, M., Ingber, D.E., 2012. A combined micromagnetic-microfluidic device for rapid capture and culture of rare circulating tumor cells. Lab on a Chip 12(12), 2175-2181.
Khoshmanesh, K., Nahavandi, S., Baratchi, S., Mitchell, A., Kalantar-zadeh, K., 2011. Dielectrophoretic platforms for bio-microfluidic systems. Biosensors & Bioelectronics 26(5), 1800-1814.
Khoshmanesh, K., Zhang, C., Tovar-Lopez, F.J., Nahavandi, S., Baratchi, S., Mitchell, A., Kalantar-Zadeh, K., 2010. Dielectrophoretic-activated cell sorter based on curved microelectrodes. Microfluidics and Nanofluidics 9(2-3), 411-426.
Kuntaegowdanahalli, S.S., Bhagat, A.A., Kumar, G., Papautsky, I., 2009. Inertial microfluidics for continuous particle separation in spiral microchannels. Lab on a Chip 9(20), 2973-2980.
Kuo, C.T., Liu, C.H., 2008. A novel microfluidic driver via AC electrokinetics. Lab on a Chip 8(5), 725-733.
Lao, A.L.K., Lee, Y.K., Hsing, I.M., 2004. Mechanistic investigation of nanoparticle motion in pulsed voltage miniaturized electrical field flow fractionation device by in situ fluorescence imaging. Analytical Chemistry 76(10), 2719-2724.
Lee, H., Jung, J., Han, S.I., Han, K.H., 2010. High-speed RNA microextraction technology using magnetic oligo-dT beads and lateral magnetophoresis. Lab on a Chip 10(20), 2764-2770.
Lee, K.H., Kim, S.B., Lee, K.S., Sung, H.J., 2011a. Enhancement by optical force of separation in pinched flow fractionation. Lab on a Chip 11(2), 354-357.
Lee, M.G., Choi, S., Park, J.K., 2009. Three-dimensional hydrodynamic focusing with a single sheath flow in a single-layer microfluidic device. Lab on a Chip 9(21), 3155-3160.
Lewpiriyawong, N., Yang, C., Lam, Y.C., 2012. Electrokinetically driven concentration of particles and cells by dielectrophoresis with DC-offset AC electric field. Microfluidics and Nanofluidics 12(5), 723-733.
Li, H., Wong, T.N., Nguyen, N.-T., 2011. Microfluidic switch based on combined effect of hydrodynamics and electroosmosis. Microfluidics and Nanofluidics 10(5), 965-976.
Li, Y., Dalton, C., Crabtree, H.J., Nilsson, G., Kaler, K.V., 2007. Continuous dielectrophoretic cell separation microfluidic device. Lab on a Chip 7(2), 239-248.
Lillehoj, P.B., Tsutsui, H., Valamehr, B., Wu, H., Ho, C.M., 2010. Continuous sorting of heterogeneous-sized embryoid bodies. Lab on a Chip 10(13), 1678-1682.
Lin, L.W., Chiao, M., 1996. Electrothermal responses of lineshape microstructures. Sensors and Actuator A: Physical 55(1), 35-41.
Lin, Y.H., Yang, Y.W., Chen, Y.D., Wang, S.S., Chang, Y.H., Wu, M.H., 2012. The application of an optically switched dielectrophoretic (ODEP) force for the manipulation and assembly of cell-encapsulating alginate microbeads in a microfluidic perfusion cell culture system for bottom-up tissue engineering. Lab on a Chip 12(6), 1164-1173.
Mach, A.J., Kim, J.H., Arshi, A., Hur, S.C., Di Carlo, D., 2011. Automated cellular sample preparation using a Centrifuge-on-a-Chip. Lab on a Chip 11(17), 2827-2834.
Manz, A., Graber, N., Widmer, H.M., 1990. Miniaturized total chemical-analysis systems – a novel concept for chemical sensing. Sensors and Actuators B-Chemical 1(1-6), 244-248.
Mark, D., von Stetten, F., Zengerle, R., 2012. Microfluidic Apps for off-the-shelf instruments. Lab on a Chip 12(14), 2464-2468.
Messaud, F.A., Sanderson, R.D., Runyon, J.R., Otte, T., Pasch, H., Williams, S.K.R., 2009. An overview on field-flow fractionation techniques and their applications in the separation and characterization of polymers. Progress in Polymer Science 34(4), 351-368.
Miller, C.M., Sudol, E.D., Silebi, C.A., Elaasser, M.S., 1995. Capillary hydrodynamic fractionation (CHDF) as a tool for monitoring the evolution of the particle-size distribution during miniemulsion polymerization. Journal of Colloid and Interface Science 172(1), 249-256.
Minerick, A.R., Zhou, R.H., Takhistov, P., Chang, H.C., 2003. Manipulation and characterization of red blood cells with alternating current fields in microdevices. Electrophoresis 24(21), 3703-3717.
Morganti, E., Collini, C., Cunaccia, R., Gianfelice, A., Odorizzi, L., Adami, A., Lorenzelli, L., Jacchetti, E., Podesta, A., Lenardi, C., Milani, P., 2011. A dielectrophoresis-based microdevice coated with nanostructured TiO2 for separation of particles and cells. Microfluidics and Nanofluidics 10(6), 1211-1221.
Morijiri, T., Sunahiro, S., Senaha, M., Yamada, M., Seki, M., 2011. Sedimentation pinched-flow fractionation for size- and density-based particle sorting in microchannels. Microfluidics and Nanofluidics 11(1), 105-110.
Nakashima, Y., Hata, S., Yasuda, T., 2010. Blood plasma separation and extraction from a minute amount of blood using dielectrophoretic and capillary forces. Sensors and Actuators B-Chemical 145(1), 561-569.
Nam, J., Lim, H., Kim, D., Shin, S., 2011. Separation of platelets from whole blood using standing surface acoustic waves in a microchannel. Lab on a Chip 11(19), 3361-3364.
Ng, W.Y., Goh, S., Lam, Y.C., Yang, C., Rodriguez, I., 2009. DC-biased AC-electroosmotic and AC-electrothermal flow mixing in microchannels. Lab on a Chip 9(6), 802-809.
Oh, J., Hart, R., Capurro, J., Noh, H., 2009. Comprehensive analysis of particle motion under non-uniform AC electric fields in a microchannel. Lab on a Chip 9(1), 62.
Pan, Y., Sonn, G.A., Sin, M.L.Y., Mach, K.E., Shih, M.-C., Gau, V., Wong, P.K., Liao, J.C., 2010. Electrochemical immunosensor detection of urinary lactoferrin in clinical samples for urinary tract infection diagnosis. Biosensors & Bioelectronics 26(2), 649-654.
Pasti, L., Agnolet, S., Dondi, F., 2007. Thermal field-flow fractionation of charged submicrometer particles in aqueous media. Analytical Chemistry 79(14), 5284-5296.
Pethig, R., 2010. Review article-dielectrophoresis: status of the theory, technology, and applications. Biomicrofluidics 4(2), 022811.
Pohl, H.A., 1978. Dielectrophoresis : the behavior of neutral matter in nonuniform electric fields. Cambridge University Press, Cambridge ; New York.
Pui-ock, S., Ruchirawat, M., Gascoyne, P., 2008. Dielectrophoretic field-flow fractionation system for detection of aquatic toxicants. Analytical Chemistry 80(20), 7727-7734.
Qian, Y., Wei, C., Lee, F.E.-H., Campbell, J., Halliley, J., Lee, J.A., Cai, J., Kong, Y.M., Sadat, E., Thomson, E., Dunn, P., Seegmiller, A.C., Karandikar, N.J., Tipton, C.M., Mosmann, T., Sanz, I., Scheuermann, R.H., 2010. Elucidation of seventeen human peripheral blood B-cell subsets and quantification of the tetanus response using a density-based method for the automated identification of cell populations in multidimensional flow cytometry data. Cytometry Part B-Clinical Cytometry 78B, S69-S82.
Rezk, A.R., Qi, A., Friend, J.R., Li, W.H., Yeo, L.Y., 2012. Uniform mixing in paper-based microfluidic systems using surface acoustic waves. Lab on a Chip 12(4), 773-779.
Robert, D., Pamme, N., Conjeaud, H., Gazeau, F., Iles, A., Wilhelm, C., 2011. Cell sorting by endocytotic capacity in a microfluidic magnetophoresis device. Lab on a Chip 11(11), 1902-1910.
Sano, M.B., Caldwell, J.L., Davalos, R.V., 2011. Modeling and development of a low frequency contactless dielectrophoresis (cDEP) platform to sort cancer cells from dilute whole blood samples. Biosensors & Bioelectronics 30(1), 13-20.
Seo, J., Lean, M.H., Kole, A., 2007. Membraneless microseparation by asymmetry in curvilinear laminar flows. Journal of Chromatography A 1162(2), 126-131.
Shafiee, H., Sano, M.B., Henslee, E.A., Caldwell, J.L., Davalos, R.V., 2010. Selective isolation of live/dead cells using contactless dielectrophoresis (cDEP). Lab on a Chip 10(4), 438-445.
Shi, J., Huang, H., Stratton, Z., Huang, Y., Huang, T.J., 2009. Continuous particle separation in a microfluidic channel via standing surface acoustic waves (SSAW). Lab on a Chip 9(23), 3354-3359.
Shi, J., Mao, X., Ahmed, D., Colletti, A., Huang, T.J., 2008. Focusing microparticles in a microfluidic channel with standing surface acoustic waves (SSAW). Lab on a Chip 8(2), 221-223.
Takahashi, T., Ogata, S., Nishizawa, M., Matsue, T., 2003. A valveless switch for microparticle sorting with laminar flow streams and electrophoresis perpendicular to the direction of fluid stream. Electrochemistry Communications 5(2), 175-177.
Tay, F.E.H., Yu, L.M., Pang, A.J., Iliescu, C., 2007. Electrical and thermal characterization of a dielectrophoretic chip with 3D electrodes for cells manipulation. Electrochim. Acta 52(8), 2862-2868.
Toner, M., Irimia, D., 2005. Blood-on-a-chip. Annual Review of Biomedical Engineering, pp. 77-103.
Valley, J.K., Ohta, A.T., Hsu, H.-Y., Neale, S.L., Jamshidi, A., Wu, M.C., 2009. Optoelectronic tweezers as a tool for parallel single-cell manipulation and stimulation. Ieee Transactions on Biomedical Circuits and Systems 3(6), 424-431.
Whitesides, G.M., 2006. The origins and the future of microfluidics. Nature 442(7101), 368-373.
Widmaier, E.P., Raff, H., Strang, K.T., Vander, A.J., 2011. Vander's human physiology : the mechanisms of body function, 12th ed. McGraw-Hill, New York.
Williams, S.J., Kumar, A., Green, N.G., Wereley, S.T., 2010. Optically induced electrokinetic concentration and sorting of colloids. Journal of Micromechanics and Microengineering 20(1), 015022.
Williams, S.K.R., Runyon, J.R., Ashames, A.A., 2011. Field-flow fractionation: addressing the nano challenge. Analytical Chemistry 83(3), 634-642.
Wu, J., Ben, Y.X., Battigelli, D., Chang, H.C., 2005. Long-range AC electroosmotic trapping and detection of bioparticles. Industrial & Engineering Chemistry Research 44(8), 2815-2822.
Xu, H., Aguilar, Z.P., Yang, L., Kuang, M., Duan, H., Xiong, Y., Wei, H., Wang, A., 2011. Antibody conjugated magnetic iron oxide nanoparticles for cancer cell separation in fresh whole blood. Biomaterials 32(36), 9758-9765.
Yamada, M., Kano, K., Tsuda, Y., Kobayashi, J., Yamato, M., Seki, M., Okano, T., 2007. Microfluidic devices for size-dependent separation of liver cells. Biomedical Microdevices 9(5), 637-645.
Yamada, M., Kobayashi, J., Yamato, M., Seki, M., Okano, T., 2008. Millisecond treatment of cells using microfluidic devices via two-step carrier-medium exchange. Lab on a Chip 8(5), 772-778.
Yamada, M., Nakashima, M., Seki, M., 2004. Pinched flow fractionation: Continuous size separation of particles utilizing a laminar flow profile in a pinched microchannel. Analytical Chemistry 76(18), 5465-5471.
Yamada, M., Seki, M., 2005. Hydrodynamic filtration for on-chip particle concentration and classification utilizing microfluidics. Lab on a Chip 5(11), 1233-1239.
Yamada, M., Seki, M., 2006. Microfluidic particle sorter employing flow splitting and recombining. Analytical Chemistry 78(4), 1357-1362.
Yang, J., Huang, Y., Wang, X.B., Becker, F.F., Gascoyne, P.R.C., 2000. Differential analysis of human leukocytes by dielectrophoretic field-flow-fractionation. Biophysical Journal 78(5), 2680-2689.
Yang, X., Forouzan, O., Brown, T.P., Shevkoplyas, S.S., 2012. Integrated separation of blood plasma from whole blood for microfluidic paper-based analytical devices. Lab on a Chip 12(2), 274-280.
Zhu, J., Tzeng, T.-R.J., Hu, G., Xuan, X., 2009. DC dielectrophoretic focusing of particles in a serpentine microchannel. Microfluidics and Nanofluidics 7(6), 751-756.