| 研究生: |
陳斂樺 Chen, Lian-Hua |
|---|---|
| 論文名稱: |
以Langmuir單分子層為模板進行金奈米粒子LB膜的製備 Fabrication of Gold Nanoparticles LB Films by Templating Langmuir Monolayer |
| 指導教授: |
李玉郎
Lee, Yuh-Lang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 118 |
| 中文關鍵詞: | 導電高分子 、金奈米粒子 、有機/無機混成薄膜 、靜電力 、單分子層模板 、氣/液界面 |
| 外文關鍵詞: | organic/inorganic., air/liquid interface, gold nanoparticles, electrostatic interaction, monolayer template |
| 相關次數: | 點閱:101 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗以硬脂胺(octadecylamine,ODA )單分子層為模板,藉由靜電力吸附副相中的金奈米粒子或經過巰基丁二酸(mercaptosuccinic acid,MSA)改質的金奈米粒子(MSA-Au)。藉由分析ODA的π-A等溫線和TEM的觀察來探討副相中MSA濃度對改質金奈米粒子吸附於單分子層上的效應。實驗結果顯示,金奈米粒子若無經過改質,僅有少量的金奈米粒子吸附於單分子層上。若在1.3×1011particles/mL的金溶液中,金奈米粒子的吸附量會隨著MSA濃度增加而增加,直到MSA濃度達到1×10-5M。但若再進一步增加MSA的濃度,由於未鍵結的MSA分子和MSA-Au會產生競爭吸附,MSA分子較MSA-Au易吸附於單分子層上,故副相中若存在過量的MSA分子將不利於金奈米粒子的吸附。ODA等溫線的行為也顯示出當有少量的金奈米粒子或MSA吸附時,等溫線發生向右偏移的現象;但更多的奈米粒子吸附時,ODA等溫線卻發生向左偏移的現象。此一現象可能由於金奈米粒子由原本吸附在ODA單分子層下方轉變為存在氣/液界面上所造成。藉由改變MSA的濃度、pH值、金粒子的濃度、及取膜時的表面壓,來控制金奈米粒子吸附在單分子模板的密度。在了解金奈米粒子吸附於單分子層的行為後,改以導電高分子為模板,以靜電力吸附副相中的金奈米粒子,以形成有機/無機混成薄膜,藉以提高導電高分子的應用性。
Gold nanoparticles (Au NPs) were prepared and surface modified by mercaptosuccinic acid (MSA) to render a surface with carboxylic acid groups (MSA-Au). Octadecylamine (ODA) was used as a template monolayer to adsorb the Au NPs dispersed in subphase. The effects of MSA concentration on the incorporation of MSA-Au to the ODA monolayer and the relevant behavior of the mixed monolayer are studied by the pressure-area (π-A) isotherm and by the observation of transmission electron microscopy (TEM). The experimental results show that the adsorbed density of Au NPs is low without the surface modification of MSA. When MSA was added into the Au NPs containing subphase, the incorporation amount of gold particles increases with increasing concentration of MSA up to about 1 x 10-5 M for the particle density 1.3 x 1011 particles/ml. With further increase of MSA concentration, the adsorbed particle density decreases due to the competitive adsorption between the free MSA molecules and the MSA-Au NPs. It is inferred that that free MSA molecules are more easily to adsorb, than the MSA-Au NPs, to the ODA monolayer. Therefore, an excess amount of MSA presented in the subphase is disadvantageous to the incorporation of gold particles. The study on the monolayer behavior also exhibits that the π-A isotherm of ODA monolayer shifts right when little amount of Au NPs or free MSA molecules are incorporated. However, when higher amount of particles are adsorbed at the air/liquid interface, a left-shift of the π-A isotherm appears probably due to the adsorption of MSA molecules onto the particles surface and the transferring of the particles from beneath the ODA monolayer to the air/water interface. According to the present method, it is able to prepare uniform particulate film of controlled density through the controlling of particle concentration in the subphase, the MSA concentration, and the compression of monolayer. Next, we replaced the ODA monolayer with PDPA polymer as template to adsorb the gold nanoparticles of subphase. PDPA polymer spread at interface as template is the same of ODA monolayer to adsorb gold nanoparticles capped MSA molecular by electrostatic interface to obtain the organic/inorganic mixed film improving the application of polymer.
1. Oregan, B., Gratzel, M. “A low-cost, high-efficiency solar-cell based
on dye-sensitized colloidal TiO2 films ,” Nature 1991, 353, 737.
2. Jennissen H.P., Zumbrink T. “A novel nanolayer biosensor principle,”
Biosens. Bioelectron. 2004, 19, 987.
3. Szabo, T., Nemeth, J., Dekany, I. “Zinc oxide nanoparticles incorporated in ultrathin layer silicate films and their photocatalytic
properties,” Colloids Surf. A: Physicochem. Eng. Asp 2003, 230, 23.
4. Hornyak, G. L., Patrissi, C. J., Martin, C. R. Fabrication, characterization, and optical properties of gold nanoparticle/porous alumina composites: the nonscattering Maxwell-Garnett limit,” J. Phys. Chem. B. 1997, 101, 1548.
5. Takahashi, M., Natori, H., Tajima K., Kobayashi K. “Particulate assemblies of CdS and TiO2 prepared by Langmuir-Blodgett technique
with octadecylamine/methylstearate mixed films,” Thin Solid Films 2005, 489, 205.
6. Muramatsu, K., Takahashi, M., Tajima, K., Kobayash, K.“Two-dimensional assemblies of colloidal SiO2 and TiO2 particles prepared by the Langmuir-Blodgett technique,” J. Colloid Interface Sci. 2001, 242, 127.
7. Mayya, K. S., Patil, V., Sastry, M. “Lamellar multilayer gold cluster films deposited by the Langmuir-Blodgett technique,” Langmuir 1997, 13, 2575.
8 Mayya, K. M., Gole A., Jain N., Phadtare S., Langevin D., Sastry M. “Time-dependent complexation of cysteine-capped gold nanoparticles with octadecylamine langmuir monolayers at the air-water interface,” Langmuir 2003, 19, 9147.
9. Sastry, M., Rao, M., Ganesh, K. N. “Electrostatic assembly ofnanoparticles and biomacromolecules,” Acc. Chem. Res. 2002, 35, 847.
10. Lowman, G. M., Nelson, S. L., Graves, S. M., Strouse, G. F., Buratto, S.
K.“Polyelectrolyte-quantum dot multilayer films fabricated by combined layer-by-layer assembly and langmuir-schaefer deposition,” Langmuir 2004, 20, 2057.
11. Hicks J. F., Young S. S., and Royce W. M. “Layer-by-layer growth of polymer/nanoparticle films containing monolayer-protected gold clusters ,” Langmuir 2002, 18, 2288.
12. Vidya V., Prasanth K. N., Narang S.N. “Molecular packing in CdS containing conducting polymer composite LB multilayers,” Colloids Surf. A: Physicochem. Eng. Asp. 2002, 198–200, 67.
13. Bowden, C. M., Haus, J. W. “Nonlinear-optica properties of materials,” J.
Opt. Soc. Am. B 1989, 6, No. 4, 562.
14. Zou, B. S., Zhang, Y., Xiao, L. Z., Li, T. J. “Study on nonlinear optical properties of ferric oxide UFP sol,” Chin. J . Semicond. 1991, 12, 145.
15. Zylberajch, C., Ruaudel-Teixier, A., Barraud, A. “Properties of inserted mercury sulfide single layers in a langmuir-blodgett matrix,” Thin Solid Films 1989, 179, 9.
16. Zhao, X. K., Fendler. J. H. “Electrochemical generation of 2-dimensional
silver particulate films at monolayer surfaces and their characterization on
solid substrates,” J. Phys. Chem. 1990, 94, 3384.
17. Zhao, X. K., Xu, S. Q., Fendler, J. H. “Ulterasmall magnetic particles in
langmuir-blodgett-films,” J. Phys. Chem. 1990.94, 2573.
18. Peng, X., Zhang, Y., Yang, J., Zou, B., Xiao, L., Tiejin, L. “Formation of nanoparticulate iron(III) oxide-stearate multilayer through Langmuir-Blodgett method,” J. Phys. Chem. 1992, 96, 3412.
19. Lihua P., Koichi M., Motonari A. “Formation process of two-dimensional networked gold nanowires by citrate reduction of AuCl4- and the shape stabilization,” Langmuir 2004, 20, 7837.
20. Enüstün, B. V., Turkevich, J. “Coagulation of colloidal gold,” J. Am.Chem. Soc. 1963, 85, 3317.
21. Kumar, A., Mandal, S., Selvakannan, P.R., Pasricha, R., Mandale, A.B., Sastry, M. “Investigation into the interaction between surface-bound alkylamines and gold nanoparticles,” Langmuir 2003, 19, 6277.
22. Bourgoin, J.P., Kergueris, C., Lefèvre, E., Palacin, S. “Langmuir-Blodgett films of thiol-capped gold nanoclusters: fabrication and electrical properties,” Thin Solid Films 1998, 327–329, 515.
23. Aslan, K., Perez-Luna, V. H. “Surface modification of colloidal gold by chemisorption of alkanethiols in the presence of a nonionic surfactant,” Langmuir 2002, 18, 6059.
24. Kimura, K., Takashima, S., Ohshima, H. “Molecular approach to the surface potential estimate of thiolate-modified gold nanoparticles,” J. Phys. Chem. B 2002, 106, 7260.
25. Cumberland, S. L., Strouse, G. F. “Analysis of the nature of oxyanion adsorption on gold nanomaterial surfaces,” Langmuir 2002, 18, 269.
26. Johnson, S. R., Evans, S. D., Mahon, S. W., Ulman, A. “Alkanethiol molecules containing an aromatic moiety self-assembled onto gold clusters,” Langmuir 1997, 13, 51.
27. Hostetler, M. J., Green, S. J., Stokes, J. J., Murray, R. W. “Monolayers in three dimensions: synthesis and electrochemistry of omega-functionalized alkanethiolate-stabilized gold cluster compounds,” J. Am.Chem. Soc. 1996, 118, 4212.
28. Ingram, R. S.; Hostetler, M. J.; Murray, R. W. “Poly-hetero-omega-functionalized alkanethiolate-stabilized gold cluster compounds,” J. Am. Chem. Soc. 1997, 119, 9175.
29. Buining, P. A., Humbel, B. M., Philipse, A. P., Verkleij, A. J. “Preparation of functional silane-stabilized gold colloids in the (sub)nanometer size range,” Langmuir 1997, 13, 3921.
30. Brown, L. O., Hutchison, J. E. “Convenient preparation of stable, narrow-dispersity, gold nanocrystals by ligand exchange reactions,” J. Am. Chem. Soc. 1997, 119, 12384.
31. Yonezawa, T., Sutoh, M., Kunitake, T. “Practical preparation of size-controlled gold nanoparticles in water,” Chem. Lett. 1997, 619.
32. Brust, M., Fink, J., Bethell, D., Schiffrin, D. J., Kiely, C. J. “Synthesis and reactions of functionalized gold nanoparticles,” J. Chem. Soc., Chem. Commun. 1995, 16, 1655.
33. Chen, S., Kimura, K. “Synthesis and characterization of carboxylate-modified gold nanoparticle powders dispersible in water,” Langmuir 1999, 15, 1075.
34. Giersig, M., Mulvaney, P. “Preparation of ordered ccolloid monolayers by electrophoretic deposition,” Langmuir 1993, 9, 3408.
35. Yonezawa, T., Kunitake T. “Practical preparation of anionic mercapto ligand-stabilized gold nanoparticles and their immobilization,” Colloids Surf. A: Physicochem. Eng. Asp. 1999,149, 193.
36. Sun, L., Crooks, R. M., Chechik, V. “Preparation of polycyclodextrin hollow spheres by templating gold nanoparticles,” Chem. Commun. 2001, 359.
37. Slot, J. W., Geuze, H. J. Eur. J. Cell Biol. 1985, 38, 87.
38. Mucic, R. C., Storhoff, J. J., Mirkin, C. A., Letsinger, R. L. “DNA-directed synthesis of binary nanoparticle network materials,” J. Am.Chem. Soc. 1998, 120, 12674.
39. Loweth, C. J., Caldwell, W. B., Peng, X. G., Alivisatos, A. P., Schultz, P. G. “DNA-based assembly of gold nanocrystals,” Angew. Chem., Int. Ed. 1999, 38, 1808.
40. Park, S. J., Lazarides, A. A., Mirkin, C. A., Brazis, P. W., Kannewurf, C. R., Letsinger, R. L. “The electrical properties of gold nanoparticle assemblies linked by DNA,” Angew. Chem., Int. Ed. 2000, 39, 3845.
41. Daniel, M. C., Astruc, D. “Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology,” Chem. Rev. 2004, 104, 293.
42. Porter, L.J., Perrin, D. D. “Nickel(II) and zinc(II) complexes of' mercaptosuccinic acid,” Aus. J. Chem. 1969, 22(1) 267.
43. Zhu, T., Vasilev, K., Kreiter, M., Mittler, S., Knoll, W. “Surface modification of citrate-reduced colloidal gold nanoparticles with 2-mercaptosuccinic acid,” Langmuir 2003, 19, 9518.
44. 科學發展月刊 2002年6月,354期,第48頁
45. Li, L. S., Hui, Z., Chen, Y., Zhang, X. T., Peng, X., Liu, Z., Li, T. J. “Preparation and organized assembly of nanoparticulate TiO2–stearate alternating Langmuir–Blodgett films,” J. Colloid Interface Sci. 1997, 192, 275.
46. Mayya, K. S., Patil, V., and Sastry, M. “Influence of colloidal subphase pH on the deposition of multilayer Langmuir-Blodgett films of gold clusters,” J. Chem. Soc., Faraday Trans. 1997, 93, 3377.
47. Mayya, K. S., Sastry, M. “A study of the partitioning of colloidal particles based on their size during electrostatic immobilization at the air-water interface using fatty amine monolayers,” J. Phys. Chem. B 1997, 101, 9790.
48. Mayya, K. S., Patil, V., Kumar, P. M., Sastry, M. “On the deposition of Langmuir-Blodgett films of Q-state CdS nanoparticles through electrostatic immobilization at the air-water interface,” Thin Solid Films 1998, 312, 300.
49. Li, L. S., Zhang, J., Wang, L. J., Chen, Y., Hui, Z., Li, T. J., Chi, L. F., Fuchs, H. “Nanoscale organized assembly of nanoparticulate TiO2-stearate monolayers through the Langmuir-Blodgett method,” J. Vac. Sci. Technol. B 1997, 15, 1618.
50. Smith, R. D., Berg, J. C. “The collapse of surfactant monolayers at the air—water interface,” J. Colloid Interface Sci. 1980, 74, 273.
51. Avila, L.V.N., Saraiva, S. M., Oliveira, J.F. “Stability and collapse of monolayers of stearic acid and the effect of electrolytes in the subphase,” Colloids Surf. A: Physicochem. Eng. Asp. 1999, 154, 209.
52. Chovelon, J. M., Wan, K., Jaffrezic-Renault N. “Influence of the surface pressure on the organization of mixed Langmuir-Blodgett films of octadecylamine and butyrylcholinesterase. 1. Film preparation at the air-water interface,” Langmuir 2000, 16, 6223.
53. Vollhardt, D., Retter, U. “Nucleation in insoluble monolayers .1. nucleatuin and growth-model for relaxation of metastable monolayers,” J. Phys. Chem. 1991, 95, 3723.
54. Cavalli, A., Dynarowicz-Latka, P., Oliveira, O. N., Feitosa, E. “Using an effective surface charge to explain surface potentials of Langmuir monolayers from dialkyldimethylammonium halides with the Gouy-Chapman theory,” Chem. Phys. Lett. 2001, 338, 88.
55. Wagner, J., Michel, T., Nitsch, W. “Relaxation behavior and bilayer formation, of poly (4-vinylpyridinium) type polyelectrolytes at the air/water interface,” Langmuir 1996, 12, 2807.
56. Wang, J., Somasundaran, P. “Reversible conformational behavior of poly(acrylic acid) LB film with changes in pH, ionic strength and time,” Colloids Surf. A: Physicochem. Eng. Asp. 2006, 273, 63.
57. Dhanabalan, A., Dabke, R. B., Prasanth N., Kumar, S., Talwar, S., Major, S., Lal, R., Contractor, A. Q. “A study of Langmuir and Langmuir-Blodgett films of polyaniline,” Langmuir 1997, 13, 4395.
58. Chung, S. F., Lee, Y. L., Wen, T.C. “The extensibility of poly(diphenylamine) monolayer at air/liquid interface,” Thin Solid Films 2005, 493, 258.
59. Mizuta, Y., Matsuda, M. “Spreading behavior of poly-(N-dodecylacrylamide-co-styrene) monolayer and Langmuir-Blodgett multilayer formation,” Macromolecules 1991, 24, 5459.
60. Vollhardt, D., Retter, U. “Growth of preformed 3D nuclei in Langmuir monolayers below critical supersaturation,” Langmuir 1998, 14, 7250.
61. Wagner, J., Michel, T., Nitsch, W. “Relaxation behavior and bilayer formation of poly(4-vinylpyridinium) type polyelectrolytes at the air/water interface,” Langmuir 1996, 12, 2807.
62. 高雄應用科技大學學報,第三十三期,民國九十三年。
63. 郭仲文,苯胺醛二次摻合物對聚苯胺導電性質的影響 ,國立成功大學化學系碩士論文。
64. Elizabeth W. P., Antonio J. R., Mark S. W. “Resistance of polyanillne films as a function of electrochemical potential and the fabrication of poiyanlline-based microelectronic devices,” J. Phys. Chem. 1985, 89, 1441.
65. Zaban, A., Diamant, Y. “Electrochemical deposition of organic semiconductors on high surface area electrodes for solar cells,” J. Phys. Chem. B 2000, 104, 10043-10046.
66. Zheng L., Urian. R. C. “A binaphthyl-based conjugated polymer for Light-Emitting diodes,” Chem. Mater. 2000, 12(1), 13.
67. Garnier F. “Thin-film transistors based on organic conjugated semiconductors,” Chem. Phys., 1998, 227, 253.
68. Mamedov, A. A., Belov, A., Giersig, M., Mamedova, N. N., Kotov,N. A. “Nanorainbows: graded semiconductor films from quantum dots,” J. Am. Chem. Soc. 2001, 123, 7738.
69. Kovtyukhova, N. I., Ollivier, P. J., Chizhik, S., Dubravin, A., Buzaneva, E., Gorchinskiy, A. D., Marchenko, A., Smirnova, N. “Self-assembly of
ultrathin composite TiO2/polymer films,” Thin Solid Films 1999, 337, 166.
70. Gittins, D. I., Caruso, F. “Tailoring the polyelectrolyte coating of metal nanoparticles,” J. Phys. Chem. B 2001, 105, 6846.
71. Mayya, K. S., Sastry, M. “Electrostatic complexation of carboxylic acid derivatized silver colloidal particles with fatty amine Langmuir monolayers. Role of neutral spacer molecules in the monolayer,” Langmuir 1998, 14, 74.
72. Kang, Y. S., Risbud, S., Rabolt, J., Stroeve, P. “Brewster angle microscopy study of a magnetic nanoparticle/polymer complex at the air/water interface,” Langmuir 1996, 12, 4345.