簡易檢索 / 詳目顯示

研究生: 施廷潤
Shih, Ting-Ruen
論文名稱: 微流體元件技術與其在奈米顆粒合成之應用
Development of Microfluidic Devices and Their Applications to Nanoparticle Synthesis
指導教授: 鍾震桂
Chung, Chen-Kuei
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 124
中文關鍵詞: 奈米粒子毛細力田口法混合器混合
外文關鍵詞: nanoparticle, Taguchi method, capillary, micromixer, mixing
相關次數: 點閱:133下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 微流體系統中,流體的混合與驅動是最基本且重要的技術,本論文分別針對微型混合器與流體自驅動晶片做探討。雖然微混合器已被廣泛的研究,但大部分混合器採用複雜的多層流道結構,導致製程步驟繁瑣且不利於微流體元件間的整合。為了改善傳統混合器複雜的多層結構,本研究著重於平面式被動微混合器,可分成擋塊混合器與菱形混合器兩部份。研究方法為利用數值模擬分析幾何參數對流場與濃度場的影響,再藉由流體混合實驗進一步驗證微混合器之混合效能。在擋塊混合器方面,田口法顯示擋塊高度與混合單元數目對混合有顯著的影響性,擋塊寬度與混合室大小對流體混合相對比較不重要。當混合器流道結構為間隙比為1/8、3混合單元、擋塊寬度80微米、混合室長寬比為1時,混合效率在雷諾數低於0.1和高於40時,可達90%的混合效率。本文另一平面式微混合器為菱形流道混合器,由數值模擬結果可知,菱形數目愈多、噴嘴喉部尺寸愈小或菱形轉角尺寸愈小皆有助於流體混合。當菱形混合器為四菱形、流道寬度200微米、噴嘴喉部寬度100微米、具菱形截角結構時,混合器在總流量為1987.2 μl/min時,可達85%的混合效率。
    本論文第二部份為毛細驅動流體晶片製作。傳統毛細力驅動之微流體晶片一般以高分子材料(例如SU-8或PDMS)製作流道,常採用表面改質方式增進材料親水性達到流體驅動目的。但其缺點為材料表面隨時間增加親水性將迅速消失。本論文主要貢獻為直接選用高親水性之材料(玻璃與液晶高分子)製作自驅動晶片,達到長時效親水與驅動目的,可避免親水性隨時間衰減或消失,而導致無法驅動流體之缺點。將本研究所製作的玻璃、液晶高分子晶片以去離子水、血漿、全血做流動測試,其平均流動速度分別為9.52、4.88和1.89 mm/s,去離子水流動速度最快,全血流動速度最慢。
    本論文第三部份為利用溶膠-凝膠法,在連續式合成系統中合成二氧化矽奈米粒子。此合成系統因整合了擋塊型微混合器,可快速且均勻的混合反應流體。此連續式系統更採用直徑為毫米等級之反應流道,改善連續式合成晶片低產量之缺點。本研究分別針對不同的氨濃度、水濃度與反應溫度等因子做探討。結果顯示,當氨濃度愈小、水濃度愈高與反應溫度愈高將可合成粒徑較小且粒徑分佈較集中的奈米粒子。

    In microfluidic systems, mixing and driving are two basic and important techniques. In this thesis, author focus on the researches of planar micromixers and capillary-driven chip. Most of proposed micromixers are multilayer structure and complex fabrication process. They are difficult to be integrated with others microfluidic devices. In order to improve above disadvantages, obstacled micromixers and rhombic micromixers with planar structures are proposed. Results show an obstacled micromixer with gap ratio of 1/8, three mixing units, obstacled width of 80 μm and square chamber can achieve high mixing efficiency over 90% at Re > 40. Much improved mixing can also be obtained at low Reynolds number (Re < 0.1) by molecular diffusion. The other planar design is the rhombic micromixer. Simulation results show higher mixing efficiency can be achieved by more rhombus, smaller throat width, and smaller turning width. In the combination of 4 rhombi, throat width of 100 μm, rhombic channel width of 200 μm and turning width of 100 μm, mixing efficiency of 85% can be obtained at Re 119.
    Second part in this thesis is the fabrication of the capillary-driven microfluidic chip with long-term hydrophilic property. In general, micropumps are often integrated to microchip to drive high-viscosity liquids, such as whole blood and blood plasma. However, a moving part in the micropump results in complex design and difficult fabrication. Hence, the capillary-driven microfluidic chip without moving parts is long-awaited because of simpler design and power-free operation. In this research, glass slide and LCP film were used to fabricate the capillary-driven chip because of the high hydrophilic property without using any surface modification treatments. Flow behavior of various viscosity fluids had been tested. Average moving velocities of DI water, blood plasma and whole blood are 9.52 mm/s, 4.88 mm/s and 1.89 mm/s, respectively. This chip can actuate high-viscosity blood which is generally driven by external syringe pumps or micropumps.
    Third part in this thesis is the nanoparticle synthesis by a continuous-flow system. An mm-scale aging channel and obstacled micromixer were combined as a high-throughput silica synthesis system for overcoming the disadvantage of low production rate in micro-scale synthesis systems and non-homogeneous mixing in the batch system. Synthesis experiments were carried out for getting narrower size distribution under different recipes and reaction temperatures. Results show smaller nanoparticle and narrow size distribution can be obtained under lower ammonia concentrations, higher water concentration and higher reaction temperature. Larger inner diameters of ageing tubes can give smaller nanoparticles and narrower size distribution.

    摘 要 I Abstract III 誌 謝 V Table of Contents VI List of Tables IX List of Figures X Nomenclature XVI Chapter 1 Introduction 1 1.1 Background of the research 1 1.2 Objects of the research 2 1.3 Outline of this thesis 3 Chapter 2 Literature Review 6 2.1 Active micromixers 6 2.2 Passive micromixers 6 2.2.1 Lamination-based micromixer 7 2.2.2 Screw rotation by floor-patterned channel 8 2.2.3 Screw rotation by curved channel 8 2.2.4 Rotation by planar microchannel with obstructions 10 Chapter 3 Numerical Simulation 19 3.1 Pre-processing (grid generation) 19 3.2 Solving equations 19 3.3 Post processing 21 3.4 Mixing efficiency 21 Chapter 4 Micromixer Fabrication and Flow Visualization 23 4.1 Wafer cleaning and mask 23 4.2 Microfabrication process 23 4.3 Flow visualization 25 Chapter 5 In-Plane Obstacled Micromixer 33 5.1 Micromixer design 33 5.2 Results and discussion of obstacled micromixer 33 5.2.1 Grid independent test 34 5.2.2 Straight microchannel without obstacles 34 5.2.3 Front-obstacle micromixer 35 5.2.4 Micromixer with one mixing unit 36 5.2.5 Effect of number of mixing units 38 5.2.6 Geometry parameter analysis by Taguchi method 40 5.3 Summary 41 Chapter 6 In-Plane Rhombic Micromixer 59 6.1 Micromixer design 59 6.2 Results and discussion of rhombic micromixer 60 6.2.1 Mixing in the cross-shaped microchannel without a nozzle 60 6.2.2 Mixing in the cross-shaped microchannel with a nozzle 60 6.2.3 Mixing in the rhombic microchannel 62 6.2.4 Hybrid mixer: four-rhombus channel combined with a nozzle 64 6.2.5 Modified hybrid mixer: four-rhombus channel combined with a nozzle and flat angle 65 6.2.6 Modified rhombic micromixer: three-rhombus channel combined with baffles 66 6.3 Summary 69 Chapter 7 Capillary Driven Fluidic Chip 88 7.1 Introduction 88 7.2 Chip design and fabrication 89 7.3 Experimental results and discussion 90 7.3.1 Contact angle measurement 91 7.3.2 Flow test of capillary-driven fluidic chip 91 7.4 Summary 94 Chapter 8 Silica Nanoparticle Synthesis 100 8.1 Introduction 100 8.2 Sol-gel process for silica particle synthesis 102 8.3 Experimental method 103 8.3.1 Starting solutions 103 8.3.2 Stirred-batch silica synthesis 103 8.3.3 Silica synthesis using continuous flow system 103 8.3.4 Sample collection and characterization analysis 104 8.4 Results and discussion 104 8.4.1 Silica particle synthesis using batch and continuous flow reactors 105 8.4.2 Effect of ammonia concentration using continuous flow reactors 105 8.4.3 Effect of water concentration using continuous flow reactors 106 8.4.4 Effect of reaction temperature using continuous flow reactors 106 8.5 Summary 107 Chapter 9 Conclusions and Future Research 113 9.1 Conclusions 113 9.2 Future research 114 References 116 Vita 124

    1 A. Manz, N. Graber and H. M. Widmer, Miniaturized total chemical analysis systems: a novel concept for chemical sensing, Sensors and Actuators B 1, pp. 244–248, 1990.
    2 N. T. Nguyen and Z. Wu, Micromixers–a review, Journal of Micromechanics and Microengineering 15, pp. R1–R16, 2005.
    3 R. H. W. Lam, M. Lei, Z. Dong, K. F. Lei and W. J. Li, Integrated vortex micropumps and active micromixers in polymer substrates for automating bio-fluidic manipulation, 27th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Shanghai, China, pp. 1297–1300, 2005.
    4 C. Y. Lee, G. B. Lee, J. L. Lin, F. C. Huang and C. S. Liao, Integrated microfluidic systems for cell lysis, mixing/pumping and DNA amplification, Journal of Micromechanics and Microengineering 15, pp. 1215–1223, 2005.
    5 D. J. Laser and J. G. Santiago, A review of micropumps, Journal of Micromechanics and Microengineering 14, pp. R35–R64, 2004.
    6 K. S. Ryu, K. Shaikh, E. Goluch, Z. Fan and C. Liu, Micro magnetic stir-bar mixer integrated with Parylene microfluidic channels, Lab on a Chip 4, pp 608-613, 2004.
    7 H. Y. Tseng, C. H. Wang and G. B. Lee, Membrane-activated microfluidic rotary devices for pumping and mixing, Biomedical Microdevices 9, pp. 545–554, 2007.
    8 S. K. Hsiung, C. H. Lee, J. L. Lin and G. B. Lee, Active micro-mixers utilizing moving wall structures activated pneumatically by buried side chambers, Journal of Micromechanics and Microengineering 17, pp. 129–138, 2007.
    9 V. Hessel, H. Löwe and F. Schönfeld, Micromixers-a review on passive and active mixing principles, Chemical Engineering Science 60, pp. 2479–2501, 2005.
    10 V. Vivek, Y. Zeng and E. S. Kim, Novel acoustic-wave micromixer, 13th Annual International Conference on Micro Electro Mechanical Systems (MEMS), Miyazaki, Japan, pp. 668–673, 2000.
    11 Z. Yang, S. Matsumoto, H. Goto, M. Matsumoto and R. Maeda, Ultrasonic micromixer for microfluidic systems, Sensors and Actuators A 93, pp. 266–272, 2001.
    12 F. G. Bessoth, A. J. DeMello and A. Manz, Microstructure for efficient continuous flow mixing, Analytical Communications 36, pp. 213–215, 1999.
    13 M. Koch, H. Witt, A. G. R. Evans and A. J. Brunnschweiller, Improved characterization technique for micromixers, Journal of Micromechanics and Microengineering 9, pp. 156–158, 1999.
    14 N. Schwesinger, T. Frank and H. Wurmus, A modular microfluid system with an integrated micromixer, Journal of Micromechanics and Microengineering 6, pp. 99–102, 1996.
    15 S. W. Lee, D. S. Kim, S. S. Lee and T. H. Kwon, A split and recombination micromixer fabricated in a PDMS three-dimensional structure, Journal of Micromechanics and Microengineering 16, pp. 1067–1072, 2006.
    16 A. D. Stroock, S. K. W. Dertinger, A. Ajdari, I. Mezic, H. A. Stone and G. M. Whitesides, Chaotic mixer for microchannels, Science 295, pp. 647–651, 2002.
    17 D. S. Kim, S. W. Lee, T. H. Kwon and S. S. Lee, A barrier embedded chaotic micromixer, Journal of Micromechanics and Microengineering 14, pp. 798–805, 2004.
    18 L. Wang and J. T. Yang, An overlapping criss-cross micromixer using chaotic mixing principles, Journal of Micromechanics and Microengineering 16, pp. 2684–2691, 2006.
    19 H. M. Kim and K. Y. Kim, Shape optimization of three-dimensional channel roughened by angled ribs with RANS analysis of turbulent heat transfer, International Journal of Heat and Mass Transfer 49, pp. 4013–4022, 2006.
    20 F. Jiang, K. S. Drese, S. Hardt, M. Kupper and F. Schönfeld, Helical flows and chaotic mixing in curved micro channels, AIChE Journal 50, pp. 2297-2305. 2004.
    21 A. P. Sudarsan and M. V. Ugaz, Fluid mixing in planar spiral microchannels, Lab on a Chip 6, pp. 74–82, 2006.
    22 Y. Yamaguchi, F. Takagi, T. Watari, K. Yamashita, H. Nakamura, H. Shimizu and H. Maeda, Interface configuration of the two layered laminar flow in a curved microchannel, Chemical Engineering Journal 101, pp. 367–372, 2004.
    23 K. Norbert, E. Michael, H. Daniel, and W. Peter, Fluid dynamics and transfer processes in bended microchannels, Heat Transfer Engineering 26, pp 71-78, 2005.
    24 N. Kockmann, T. Kiefer, M. Engler and P. Woias, Convective mixing and chemical reactions in microchannels with high flow rates, Sensors and Actuators B 117, pp. 495–508, 2006.
    25 V. Mengeaud, J. Josserand and H. H. Girault, Mixing processes in a zigzag microchannel: finite element simulations and optical study, Analytical Chemistry 74, pp. 4279–4286, 2002.
    26 S. H. Wong, P. Bryant, W. Michael and C. Wharton, Investigation of mixing in a cross-shaped micromixer with static mixing elements for reaction kinetics studies, Sensors and Actuators B 95, pp. 414–424, 2003.
    27 Y. Lin, G. J. Gerfen, D. L. Rousseau and S. R. Yeh, Ultrafast microfluidic mixer and freeze-quenching device, Analytical Chemistry 75, pp. 5381–5386, 2003.
    28 H. Wang, P. Iovenitti, E. Harvey and S. Masood, Optimizing layout of obstacles for enhanced mixing in microchannels, Smart Materials and Structures 11, pp. 662–667, 2002.
    29 Y. Y. Tsui, C. S. Yang, and C. M. Hsieh, Evaluation of the mixing performance of the micromixers with grooved or obstructed channels, Journal of Fluids Engineering 130, pp. 071102-1–071102-10, 2008.
    30 L. Chen, G. Wang, C. Lim, G. H. Seong, J. Choo, E. K. Lee, S. H. Kang and J. M. Song, Evaluation of passive mixing behaviors in a pillar obstruction poly(dimethylsiloxane) microfluidic mixer using fluorescence microscopy, Microfluidics and Nanofluidics, 2009. ( DOI 10.1007/s10404-008-0386-1)
    31 R. H. Liu, M. A. Stremler, K. V. Sharp, M. G. Olsen, J. G. Santiago, R. J. Adrian, H. Aref and D. J. Beebe, Passive mixing in a three-dimensional serpentine microchannel, Journal of Microelectromechanical Systems 9, pp. 190–197, 2000.
    32 H. Shakhawat , M. A. Ansari and K. Y. Kim, Evaluation of the mixing performance of three passive micromixers, Chemical Engineering Journal 150, pp. 492–501, 2009.
    33 A. A. S. Bhagat, E. T. K. Peterson and I. Papautsky, A passive planar micromixer with obstructions for mixing at low Reynolds numbers, Journal of Micromechanics and Microengineering 17, pp. 1017–1024, 2007.
    34 Y. J. Ko, S. M. Ha, H. J. Kim, D. H. Lee and Y. Ahn, Development of a PDMS-glass hybrid microchannel mixer composed of micropillars and micronozzles, Journal of Solid Mechanics and Materials Engineering 2, pp 445–454, 2008.
    35 S. A. Rani, B. Pitts and P. S. Stewart, Rapid diffusion of fluorescent tracers into Staphylococcus epidermidis biofilms visualized by time lapsemicroscopy, Antimicrobial Agents and Chemotherapy 49, pp.728–732, 2005.
    36 J. Boss, Evaluation of the homogeneity degree of a mixture, Bulk Solids Handling 6, pp. 1207–1215, 1986.
    37 J. T. Yang, K. J. Huang and Y. C. Lin, Geometric effects on fluid mixing in passive grooved micromixers, Lab on a Chip 5, pp. 1140–1147, 2005.
    38 P. Gravesen, J. Branebjerg and O. Jensen, Microfluidics—a review, Journal of Micromechanics and Microengineering 3, pp.168–182, 1993.
    39 I. D. Yang, Y. F. Chen, F. G. Tseng, H. T. Hsu, and C. C. Chieng, Surface tension driven and 3-D vortex enhanced rapid mixing microchamber, Journal of Microelectromechanical Systems 15, pp. 659–670, 2006.
    40 Y. F. Chen, F. G. Tseng, S. Y. ChangChien, M. H. Chen, R. J. Yu and C. C. Chieng, Surface tension driven flow for open microchannels with different turning angles, Microfluidics and Nanofluidics 5, pp. 193–203, 2008.
    41 F. G. Tseng, K. H. Lin, H. T. Hsu, Y. H. Chang and C. C. Chieng, A power-free surface-tension-driven fluidic network system for large-array enzyme immobilization and glucose sensing, Proceedings IEEE MEMS, Kyoto, Japan, January 19–23, pp. 419–422.2003.
    42 D. T. Eddington, J. P. Puccinelli and D. J. Beebe, Thermal aging and reduced hydrophobic recovery of polydimethylsiloxane, Sensors and Actuators B 114, pp. 170–172, 2006.
    43 M. Nordström, R. Marie, M. Calleja and A. Boisen, Rendering SU-8 hydrophilic to facilitate use in micro channel fabrication, Journal of Micromechanics and Microengineering 14, pp. 1614–1617, 2004.
    44 Y. Erkan, I. Czolkos; A. Jesorka, L. M. Wilhelmsson and O. Orwar, Direct immobilization of cholesteryl-TEG-modified oligonucleotides onto hydrophobic SU-8 surfaces, Langmuir 23, pp. 5259–5263, 2007.
    45 H. Makamba, J. H. Kim, K. Lim, N. Park and J. H. Hahn, Surface modification of poly(dimethylsiloxane) microchannels, Electrophoresis 24, pp. 3607–3619, 2003.
    46 K. Efimenko, W. E. Wallace and J. Genzer, Surface modification of Sylgard-184 (dimethyl siloxane) networks by ultraviolet and ultraviolet/ozone treatment, Journal of Colloid and Interface Science 254, pp. 306–315, 2002.
    47 H. Hillborg and U. W. Gedde, Hydrophobicity recovery of polydimethylsiloxane, Polymer 39, pp. 1991–1998, 1998.
    48 J. A. Vickers, M. M. Caulum and C. S. Henry, Generation of hydrophilic poly(dimethylsiloxane) for high-performance microchip electrophoresis, Analytical Chemistry 78, pp. 7446–7452, 2006.
    49 A. Daridon, V. Fascio, J. Lichtenberg, R. Wütrich, H. Langen, E. Verpoorte and N. F. De Rooij, Multi-layer microfluidic glass chips for microanalytical applications, Fresenius' Journal of Analytical Chemistry 371, pp. 261–269, 2001.
    50 R. Prakash and K. Kaler, An integrated genetic analysis microfluidic platform with valves and a PCR chip reusability method to avoid contamination, Microfluidics and Nanofluidics 3, pp. 177–187, 2007.
    51 D. S. Kim, S. H. Lee, C. H. Ahn, J. Y. Lee and T. H. Kwon, Disposable integrated microfluidic biochip for blood typing by plastic microinjection moulding, Lab on a Chip 6, pp. 794–802, 2006.
    52 P. K. Yuen, L. J. Kricka, P. Fortina, N. J. Panaro, T. Sakazume and P. Wilding, Microchip module for blood sample preparation and nucleic acid amplification reactions, Genome Research 11, pp. 405–412, 2001.
    53 V. I. Furdui, J. K. Kariuki and D. J. Harrison, Microfabricated electrolysis pump system for isolating rare cells in blood, Journal of Micromechanics and Microengineering 13, pp. S164–S170, 2003.
    54 J. E. Wang and C. Liu, Liquid crystal polymer (LCP) for MEMS: processes and applications, Journal of Micromechanics and Microengineering 13, pp. 628–633, 2003.
    55 A. Kruusing, Underwater and water-assisted laser processing: Part 2-Etching, cutting and rarely used methods, Optics and Lasers in Engineering 41, pp. 329–352, 2004.
    56 W. R. Jong, T. H. Kuo, S. W. Ho, H. H. Chiu and S. H. Peng, Flows in rectangular microchannels driven by capillary force and gravity, International Communications in Heat and Mass Transfer 34, pp. 186–196, 2007.
    57 S. Sadasivan, A. K. Dubey, Y. Li and D. H. Rasmussen, Alcoholic solvent effect on silica synthesis—NMR and DLS investigation, Journal of Sol-Gel Science and Technology 12, pp. 5–14, 1998.
    58 H. S. Fogler, Elements of chemical reaction engineering, Prentice-Hall, New Jersey, 1986.
    59 K. D. Kim and H. T. Kim, Formation of silica nanoparticles by hydrolysis of TEOS using a mixed semi-batch/batch method, Journal of Sol-Gel Science and Technology 25, pp. 183–189, 2002.
    60 T. Ogihara, M. Iizuka, T. Yanagawa, N. Ogata and K. Yoshida, Continuous reactor system of monosized colloidal particles, Journal of materials science 27, pp. 55–62, 1992.
    61 T. Ogihara, M. Ikeda, M. Kato and N. Mizutani, Continuous Processing of Monodispersed Titania Powders, Journal of the American Ceramic Society 72, pp. 1598–1601, 1989.
    62 T. Yonemoto, M. Kubo, T. Doi and T. Tadaki, Continuous synthesis of titanium dioxide fine particle using slug flow ageing tube reactor, Transactions of the Institute of Chemical Engineers A 75, pp. 413-419, 1997.
    63 M. Kubo and T. Yonemoto, Continuous synthesis of TiO2 fine particles and increases of particle size using a two-stage slug tubular reactor, Transactions of the Institute of Chemical Engineers A 77, pp. 335-341, 1999.
    64 O. Levenspiel, Chemical Reaction Engineering, John Wiley and Sons, New York, 1972.
    65 B. K. Paul, V. T. Remcho, S. Atre and J. E. Hutchison, Synthesis and post-processing of nanomaterials using microreaction technology, Journal of Nanoparticle Research 10, pp. 965–980, 2008.
    66 A. Gunther, S. A. Khan, M. Thalmann, F. Trachsel and K. F. Jensen, Transport and reaction in microscale segmented gas-liquid flow, Lab on a Chip 4, pp. 278–286, 2004.
    67 K. F. Jensen, Microreaction engineering–is small better?, Chemical Engineering Science 56, pp. 293–303, 2001.
    68 W. Stöber, A. Fink and E. Bohn, Controlled growth of monodisperse silica spheres in the micron size range, Journal of Colloid and Interface Science 26, pp. 62–69, 1968.
    69 J. Brinker and G. W. Scherer, Sol-Gel science: the physics and chemistry of sol-gel processing, Academic Press, Boston, 1990.
    70 S. K. Park, K. D. Kim and H. T. Kim, Preparation of silica nanoparticles: determination of the optimal synthesis conditions for small and uniform particles, Colloids and Surfaces A 197, pp. 7–17, 2002.
    71 D. L. Green, S. Jayasundara, Y. F. Lam and M. T. Harris, Chemical reaction kinetics leading to the first Stöber silica nanoparticles-NMR and SAXS investigation, Journal of Non-Crystalline Solids 315, pp. 166–179, 2003.
    72 S. S. Kim, H. S. Kim, S. G. Kim and W. S. Kim, Effect of electrolyte additives on sol-precipitated nano silica particles, Ceramics International 30, pp. 171–175, 2004.

    下載圖示 校內:2019-08-13公開
    校外:2019-08-13公開
    QR CODE