| 研究生: |
黃舒榆 Huang, Shu-Yu |
|---|---|
| 論文名稱: |
熱電致冷器暫態溫度變化分析之三維理論模式 A Three-Dimensional Theoretical Model for Predicting Transient Thermal Behavior of Thermoelectric Coolers |
| 指導教授: |
鄭金祥
Cheng, Chin-Hsiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 英文 |
| 論文頁數: | 83 |
| 中文關鍵詞: | 熱電致冷器 、理論模式 、暫態熱反應 、實驗 |
| 外文關鍵詞: | Thermoelectric cooler, theoretical model, Transient thermal behavior, Experiment |
| 相關次數: | 點閱:109 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究發展了熱電致冷器模組的三維數值理論模式,可用來分析熱電致冷器暫態之熱反應。過往既有之文獻通常會將P及N型半導體元件結合成一體來討論分析,本文發展了兩個模擬模組:定電流模組與非定電流模組,其將P及N元件分開來個別探討,而得以觀察到P型與N型熱電元件之間的差異。在定電流之數值模擬模組中,主要有四個區域,分為冷端、熱端、P與N型熱電元件;而非定電流數值模組則分成七個區塊,分別為鋁質導片、P與N型熱電元件以及陶瓷基板。本文可分析三維熱電模組的電場解與溫度解,以及各部份之暫態溫度變化;也針對熱電模組的各物理、幾何參數進行性能係數之計算。為了驗證本研究數值模擬的準確性,建構了一實驗系統進行冷熱端溫度變化的量測。經由實驗與模擬的結果互相比對,驗證數值理論模式的正確性,並且藉由模擬模組的參數分析以探討各個參數對熱電效應的影響。
Simulation model has been developed and used to predict transient thermal behavior of the thermoelectric coolers. The present models amend the previous models, in which the P-N pair was simply treated as a single bulk material so that the temperature difference between the semiconductor elements was not possible to evaluate. To improve the defects, two simulation models, constant current and non-constant current models, are developed in this study. Based on the constant current model, the thermoelectric cooler is divided into four major regions, namely, cold end, hot end, and the P-type and N-type thermoelectric elements. In the non-constant current model, the conductive aluminum plates connected with the P-type and the N-type elements are taken into consideration and the theoretical module is divided into seven major blocks, namely, aluminum plates, P-type and N-type thermoelectric elements, and the ceramic plates. Solutions for the three-dimensional electric fields in the P-type and the N-type semiconductor elements as well as transient temperature variations in the cold and the hot ends have been carried out. The magnitude of the coefficient of performance (COP) of the thermoelectric cooler is calculated in wide ranges of physical and geometrical parameters. To verify the numerical predictions, experiments have been conducted to measure the temperature variations of both the cold and the hot ends. Close agreement between the numerical and the experimental data of the temperature variations has been observed. The simulation models are adopted to carry out a parametric study to investigate the effects of the parameters.
[1] Y. Kraftmakher, Simple experiments with a thermoelectric module, European Journal of Physics 26 (2005) 959-967.
[2] G.D. Mahan, Figure of merit for thermoelectrics, Journal of Applied Physics 65 (1989) 1578-1583.
[3] R. Venkatasubramanian, E. Siivola, T. Colpitts and B. O’Quinn, Thin-film thermoelectric devices with high room-temperature figures of merit, Nature 413 (2001) 597-602.
[4] L.S. Stilbans and A.R. Regel, Thermoelectric power generation, Soviet Physics Semiconductors-Ussr 1 (1968) 1341.
[5] J.E. Parrott, A new theory of size effect in electrical conduction, Proceedings of The Physical Society of London 85 (1965) 1143.
[6] P.E. Gray, The dynamic behavior of thermoelectric devices, Wiley, New York, 1960.
[7] RP. Bywaters and H.A. Blum, The transient behavior of cascade thermoelectric heat pumps, Energy Conversion 10 (1970) 193-200.
[8] B.J. Huang and C.L. Duang, System dynamic model and temperature control of a thermoelectric cooler, International Journal of Refrigeration 23 (2000) 197-207.
[9] B.J. Huang and C.L. Duang, A design of thermoelectric cooler, International Journal of Refrigeration 23 (2000) 208-218.
[10] M. Naji, M. Alata, and M.A. Al-Nimr, Transient behavior of a thermoelectric device, Proceeding of the Institution Mechanical Engineers, Part A: Journal of Power and Energy 217 (2003) 615-621.
[11] X.C. Xuan, K.C. Ng, C. Yap, and H.T. Chua, A general model for studying effects of interface layers on thermoelectric devices performance, International Journal of Heat and Mass Transfer 45 (2002) 5159-5170.
[12] M.J. Huang, R.H. Yen, and A.B. Wang, The influence of the Thomson effect on the performance of a thermoelectric cooler, International Journal of Heat and Mass Transfer 48 (2005) 413-418.
[13] R. A. Khire, A. Messac, and S. V. Dessel, Design of thermoelectric heat pump unit for active building envelope systems, International Journal of Heat and Mass Transfer 48 (2005) 4028-4040.
[14] A. Chakraborty, B.B. Saha, S. Koyama, and K.C. Ng, Thermodynamic modeling of a solid state thermoelectric cooling device: Temperature-entropy analysis, International Journal of Heat and Mass Transfer 49 (2006) 3547–3554.
[15] K.H. Lee and O.J. Kim, Analysis on the cooling performance of the thermoelectric micro-cooler, International Journal of Heat and Mass Transfer 50 (2007) 1982-1992.
[16] A. J. Minnich, M. S. Dresselhaus, Z. F. Ren, and G. Chen, Bulk nanostructured thermoelectric materials: current research and future prospects, Energy and Environmental Science 2 (2009) 466-479.
[17] W.E. Beadle, J.C. Tsai, and R.D. Plummer, Quick reference manual for silicon integrated circuit technology, John Wiley& Sons, 1985.
[18] CRC handbook of thermoelectric, Editor: D.M. Rowe, CRC Press, USA, (1995) 145-230.
[19] Thermoelectrics handbook, Editor: D.M. Rowe, CRC Press, USA, (2006) 27-28.
[20] N. P. Gorbachuk, A. S. Bolgar, V. R. Sidorko, and L. V. Goncharuk, Heat capacity and enthalpy of Bi2Se3 and Bi2Te3 in the temperature range 58-1012K, Powder Metallurgy and Metal Ceramics 43 (2004) 284-290.
[21] A.S. Pashinkin and A.S. Malkova, Heat capacity of solid bismuth selenide (Bi2Se3), Zhurnal Fizicheskoi Khimii 79 (2005) 1325-1327.
[22] A.S. Pashinkin, A.S. Malkova, and M.S. Mikhailova, Heat capacity of solid antimony telluride, Zhurnal Fizicheskoi Khimii 81 (2008) 1–3.
[23] Y. I. Shtern, A. S. Malkova, A. S. Pashinkin, and V. A. Fedorov, Heat capacity of the n-Bi2Te2.88Se0.12 and p-Bi0.52Sb1.48Te3 solid solutions, Inorganic Materials 44 (2008) 1057-1059.
[24] 施順榮,整合基因演算法與熱流分析軟體進行散熱模組最佳化,成功大學航空太空工程研究所碩士論文,台南,民國97年。
[25] R. D. Mehta and P. Bradshaw, Design rules for small low speed wind tunnels, Aeronautical Journal 83 (1979) 443–449.