| 研究生: |
賴磬萱 Lai, Ching-Hsuan |
|---|---|
| 論文名稱: |
石化廢水生物處理優化與功能性微生物分子生物監測技術開發 Optimization of Biological treatment for petrochemical wastewater and development of molecular tools for monitoring functional microorganisms |
| 指導教授: |
黃良銘
Whang, Liang-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 113 |
| 中文關鍵詞: | 含氯有機化合物 、硝酸好氧降解 、COD比降解效率 、Hyphomicrobium |
| 外文關鍵詞: | Chlorinated organic compounds, Aerobic nitrate degradation, Specific COD degradation rate, Hyphomicrobium |
| 相關次數: | 點閱:65 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
生物廢水系統是處理石化廢水中一個具有經濟性的方法,石化廢水中通常含有人工合成的含氯有機化合物,此有機物一旦沒有經過妥善處理就排放至環境水體中會造成環境及人體健康相當大的危害。含氯有機化合物的存在亦會使廢水系統中的微生物無法完全降解有機物,而使出流的有機物濃度偏高。
本研究將針對某石化廠的生物反應系統來探討其廢水中有機物無法降解完全的原因。透過現有的實廠數據以及實驗室內的COD降解實驗測試,研究微生物在好氧、缺氧及其他不同條件之下的降解效率,尋找關鍵因子幫助實場優化其生物反應槽。除此之外,本研究亦會利用定量型聚合酶鏈鎖反應,針對總菌群及hyphomicrobium,分析其基因含量與RNA表現量,探討水質與微生物變化的關係,評估分子生物技術作為實廠操作依據的可行性,以降低系統異常的頻率。
藉由COD降解實驗中,可發現汙泥在好氧的條件下COD降解效率較高,其COD比降解效率比缺氧提高約239%,另外減少汙泥胞外聚合物的產生、提供充足的氧氣與營養鹽的添加分別至少可提升55%、18%及7%的COD比降解效率。而將原本的營養鹽,尿素,改為硝酸則可至少提升11%的COD比降解效率。在硝酸好氧批次實驗中,計算每次COD消耗所利用的硝酸,發現COD與硝酸降解比皆為20~30的情況之下,判斷微生物在此廢水中會利用有機物為碳源、硝酸為氮源,利用氧氣作為電子接受者進行氧化還原反應以降解有機物。
在分子生物技術方面,發現hyphomicrobium 會在好氧的狀況下降解硝酸,且其基因含量會受到進流硝酸濃度的調控。另外其RNA表現量也隨著COD比降解效率的增加跟著增加,顯示此菌在系統中會進行作用,幫助系統中有機物的降解。
Biological treatment is an economic strategy commonly used for wastewater treatment. Petrochemical industrial wastewater usually containing some chlorinated organic compounds may cause environmental issues when being discharged to water bodies without sufficient treatment. However, the chlorinated organic compounds are usually difficult for microorganisms to degrade, resulting high COD in effluents of Petrochemical Wastewater treatment plant (PC WWTP).
A full scale PC WWTP was investigated in this study with water quality analyses and molecular biotechnologies to explore the incompletely degradation of COD in biological process. In order to find the key factors of COD degradation in the process, batch experiments were conducted under different conditions like dissolved oxygen concentration, nutrients addition, aerobic, anoxic, different nitrogen sources and the presence of soluble extracellular polymeric substances.
According to the batch experiments, the specific COD degradation rates were higher under aerobic condition, which increased 239% when being compared to anoxic condition. Specific COD degradation rates could increase by 55%, 18% and 7%, respectively, in the batches with lower EPS content, sufficient DO and additional nutrients. Moreover, changing nitrogen sources from urea to nitrate could also increase 11% of specific COD degradation rate. It should be noted that the consumption ration of COD to nitrate in the batch experiments were between 20 to 30, implying that microorganisms in the sludge may use COD as carbon sources, nitrate as nitrogen sources and oxygen as electron acceptors.
From the results of NGS analysis and quantitative PCR, hyphomicrobium was found in the sludge and accounted for 16% of the total bacteria. Hyphomicrobium was been prove that could degrade nitrate under aerobic condition, explaining the nitrate decrease in the system. Gene concentration of hyphomicrobium in PC WWTP was strongly affected by influent nitrate concentration. The expression of hyphomicrobium also increased with the increase of specific COD degradation rate, indicating hyphomicrobium could be benefit to COD degradation.
Amann, R.I., Stromley, J., Devereux, R., Key, R., Stahl, D.A., Molecular and microscopic identification of sulfate-reducing bacteria in multispecies biofilms. Appl. Environ. Microbiol. 58, 614–623, 1992.
Asker, D., Beppu, T., Ueda, K., Sphingomonas astaxanthinifaciens sp. nov., a novel astaxanthin-producing bacterium of the family Sphingomonadaceae isolated from Misasa, Tottori, Japan. FEMS Microbiol. Lett. 273, 140–148, 2007.
Balcke, G.U., Turunen, L.P., Geyer, R., Wenderoth, D.F., Schlosser, D., Chlorobenzene biodegradation under consecutive aerobic-anaerobic conditions. FEMS Microbiol. Ecol. 49, 109–120, 2004.
Clesceri, Lenore S, Greenberg, Arnold E, Eaton, Andrew D, Rice, Eugene W, Franson, Mary Ann H (2005) Standard methodsfor the examination of water and wastewater.
DeVrieze, J., Regueiro, L., Props, R., Vilchez-Vargas, R., Jáuregui, R., Pieper, D.H., Lema, J.M., Carballa, M., Presence does not imply activity: DNA and RNA patterns differ in response to salt perturbation in anaerobic digestion. Biotechnol. Biofuels 9, 244, 2016.
Díaz, M.P., Boyd, K.G., Grigson, S.J.W., Burgess, J.G., Biodegradation of crude oil across a wide range of salinities by an extremely halotolerant bacterial consortium MPD-M, immobilized onto polypropylene fibers. Biotechnol. Bioeng. 79, 145–153, 2002.
Diez, M.C., Castillo, G., Aguilar, L., Vidal, G., Mora, M.L., Operational factors and nutrient effects on activated sludge treatment of Pinus radiata kraft mill wastewater. Bioresour. Technol. 83, 131–138, 2002.
Dobrzyńska, E., Pośniak, M., Szewczyńska, M., Buszewski, B., Chlorinated Volatile Organic Compounds—Old, However, Actual Analytical and Toxicological Problem. Crit. Rev. Anal. Chem. 40, 41–57, 2010.
Fierer, N., Jackson, J.A., Vilgalys, R., Jackson, R.B., Assessment of soil microbial community structure by use of taxon-specific quantitative PCR assays. Appl. Environ. Microbiol. 71, 4117–4120, 2005.
Gan, H.M., Gan, H.Y., Ahmad, N.H., Aziz, N.A., Hudson, A.O., Savka, M.A., Whole genome sequencing and analysis reveal insights into the genetic structure, diversity and evolutionary relatedness of luxI and luxR homologs in bacteria belonging to the Sphingomonadaceae family. Front. Cell. Infect. Microbiol. 4, 1–14, 2014.
Glass, C., Silverstein, J., Denitrification of high-nitrate, high-salinity wastewater. Water Res. 33, 223–229, 1999.
Goenrich, M., Bursy, J., Hübner, E., Linder, D., Schwartz, A.C., Vorholt, J.A., Purification and characterization of the methylene tetrahydromethanopterin dehydrogenase MtdB and the methylene tetrahydrofolate dehydrogenase FolD from Hyphomicrobium zavarzinii ZV580. Arch. Microbiol. 177, 299–303, 2002.
Imhoff, J.F., Süling, J., The phylogenetic relationship among Ectothiorhodospiraceae: A reevaluation of their taxonomy on the basis of 16S rDNA analyses. Arch. Microbiol. 165, 106–113, 1996.
Ji, B., Yang, K., Zhu, L., Jiang, Y., Wang, H., Zhou, J., Zhang, H., Aerobic denitrification: A review of important advances of the last 30 years. Biotechnol. Bioprocess Eng. 20, 643–651, 2015.
Joo, H.S., Hirai, M., Shoda, M., Characteristics of ammonium removal by heterotrophic nitrification-aerobic denitrification by Alcaligenes faecalis no. 4. J. Biosci. Bioeng. 100, 184–191, 2005.
Kargi, F., Dincer, A.R., Biological Treatment of Saline Wastewater by Fed‐Batch Operation. J. Chem. Technol. Biotechnol. 69, 167–172, 1997.
Kargi, F., Dinçer, A.R., Use of Halophilic Bacteria in Biological Treatment of Saline Wastewater by Fed-Batch Operation. Water Environ. Res. 72, 170–174, 2000.
Khaing, T.H., Li, J., Li, Y., Wai, N., Wong, F.S., Feasibility study on petrochemical wastewater treatment and reuse using a novel submerged membrane distillation bioreactor. Sep. Purif. Technol. 74, 138–143, 2010.
Kohler-Staub, D., Frank, S., Leisinger, T., Dichloromethane as the sole carbon source for Hyphomicrobium sp. strain DM2 under denitrification conditions. Biodegradation 6, 229–235, 1995.
Kotak, M., Isanapong, J., Goodwin, L., Bruce, D., Chen, A., Han, C.S., Huntemann, M., Ivanova, N., Land, M.L., Nolan, M., Pati, A., Woyke, T., Rodrigues, J.L.M., Complete genome sequence of the Opitutaceae bacterium strain TAV5, a potential facultative methylotroph of the wood-feeding termite Reticulitermes flavipes. Genome Announc. 3, 2–3, 2016.
Kuo, H., Lo, P.D.I., Chan, C., Ph, D., Lai, J., Ph, D., Wang, J., Sc, D., Pergamon PII: 33, 913–920, 1996.
Lefebvre, O., Moletta, R., Treatment of organic pollution in industrial saline wastewater: A literature review. Water Res. 40, 3671–3682, 2006.
Li, T., Li, H., Li, C., A review and perspective of recent research in biological treatment applied in removal of chlorinated volatile organic compounds from waste air. Chemosphere 250, 126338, 2020.
Limpiyakorn, T., Kurisu, F., Sakamoto, Y., Yagi, O., Effects of ammonium and nitrite on communities and populations of ammonia-oxidizing bacteria in laboratory-scale continuous-flow reactors. FEMS Microbiol. Ecol. 60, 501–512, 2007.
Martineau, C., Mauffrey, F., Villemur, R., Comparative analysis of denitrifying activities of Hyphomicrobium nitrativorans, Hyphomicrobium denitrificans, and Hyphomicrobium zavarzinii. Appl. Environ. Microbiol. 81, 5003–5014, 2015.
Matějů, V., Čižinská, S., Krejčí, J., Janoch, T., Biological water denitrification-A review. Enzyme Microb. Technol. 14, 170–183, 1992.
Nikolausz, M., Kappelmeyer, U., Nijenhuis, I., Ziller, K., Kästner, M., Molecular characterization of dichloromethane-degrading Hyphomicrobium strains using 16S rDNA and DCM dehalogenase gene sequences. Syst. Appl. Microbiol. 2005.
Pan, Z., Zhou, Jian, Lin, Z., Wang, Y., Zhao, P., Zhou, Jiong, Liu, S., Bioresource Technology E ff ects of COD / TN ratio on nitrogen removal e ffi ciency , microbial community for high saline wastewater treatment based on heterotrophic nitri fi cation-aerobic denitri fi cation process 301, 2020.
Petrosius, S.C., Drago, R.S., Young, V., Grunewald, G.C., Low-Temperature Decomposition of Some Halogenated Hydrocarbons Using Metal Oxide/Porous Carbon Catalysts. J. Am. Chem. Soc. 115, 6131–6137, 1993.
Putri, D.W., 國立成功大學 環境工程研究所 碩士論文 探討光電產業廢水生物處理程序中 dimethyl sulfoxide 與 dimethyl sulfide 對微生物族群之影響 n.d.
Rast, P., Glöckner, I., Boedeker, C., Jeske, O., Wiegand, S., Reinhardt, R., Schumann, P., Rohde, M., Spring, S., Glöckner, F.O., Jogler, C., Jogler, M., Three novel species with peptidoglycan cell walls form the new genus Lacunisphaera gen. nov. in the family opitutaceae of the verrucomicrobial subdivision 4. Front. Microbiol. 8, 1–18, 2017.
Rijkenberg, M.J.A., Kort, R., Hellingwerf, K.J., Alkalispirillum mobile gen. nov., spec. nov., an alkaliphilic non-phototrophic member of the Ectothiorhodospiraceae. Arch. Microbiol. 175, 369–375, 2001.
Roussel-Delif, L., Tarnawski, S., Hamelin, J., Philippot, L., Aragno, M., Fromin, N., Frequency and diversity of nitrate reductase genes among nitrate-dissimilating Pseudomonas in the rhizosphere of perennial grasses grown in field conditions. Microb. Ecol. 49, 63–72, 2005.
Smith, C.J., Osborn, A.M., Advantages and limitations of quantitative PCR (Q-PCR)-based approaches in microbial ecology. FEMS Microbiol. Ecol. 67, 6–20, 2009.
Takht Ravanchi, M., Kaghazchi, T., Kargari, A., Application of membrane separation processes in petrochemical industry: a review. Desalination 235, 199–244, 2009.
Tamas, I., Smirnova, A.V., He, Z., Dunfield, P.F., The (d)evolution of methanotrophy in the Beijerinckiaceae—a comparative genomics analysis. ISME J. 8, 369–382, 2014.
Throbäck, I.N., Enwall, K., Jarvis, Å., Hallin, S., Reassessing PCR primers targeting nirS, nirK and nosZ genes for community surveys of denitrifying bacteria with DGGE. FEMS Microbiol. Ecol. 49, 401–417, 2004.
Tobiszewski, M., Tsakovski, S., Simeonov, V., Namieśnik, J., Chlorinated solvents in a petrochemical wastewater treatment plant: An assessment of their removal using self-organising maps. Chemosphere 87, 962–968, 2012.
Tsai, W.T., Fate of chloromethanes in the atmospheric environment: Implications for human health, ozone formation and depletion, and global warming impacts. Toxics 5, 2017.
Valo, R., Apajalahti, J., Salkinoja-Salonen, M., Studies on the physiology of microbial degradation of pentachlorophenol. Appl. Microbiol. Biotechnol. 21, 313–319, 1985.
Wang, J., Gong, B., Huang, W., Wang, Y., Zhou, J., Bacterial community structure in simultaneous nitrification, denitrification and organic matter removal process treating saline mustard tuber wastewater as revealed by 16S rRNA sequencing. Bioresour. Technol. 228, 31–38, 2017.
Ward, D.M., Brock, T.D., Hydrocarbon biodegradation in hypersaline environments. Appl. Environ. Microbiol. 35, 353–359, 1978.
Wu, C., Li, W., Xu, P., Li, S., Wang, X., Hydrophobic mixed culture for 1,2-dichloroethane biodegradation: Batch-mode biodegradability and application performance in two-phase partitioning airlift bioreactors. Process Saf. Environ. Prot. 116, 405–412, 2018.
Zhang, T., Fang, H.H.P., Applications of real-time polymerase chain reaction for quantification of microorganisms in environmental samples. Appl. Microbiol. Biotechnol. 70, 281–289, 2006.
Zhao, J., Zuo, J., Wang, X., Lin, J., Yang, Y., Zhou, J., Chu, H., Li, P., GeoChip-based analysis of microbial community of a combined nitritation-anammox reactor treating anaerobic digestion supernatant. Water Res. 67, 345–354, 2014.