| 研究生: |
羅乾峰 Lo, Chien-Feng |
|---|---|
| 論文名稱: |
利用功能化金奈米顆粒於銅離子感測之定量分析研究及其應用 Quantitative Analysis of Colorimetric Detection for Copper Ions with Functionalized Gold Nanoparticles and Its Applications |
| 指導教授: |
陳嘉勻
Chen, Chia-Yun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 70 |
| 中文關鍵詞: | 比色法檢測 、銅離子汙染 、N, S摻雜碳量子點 、金奈米顆粒 、水質檢測 |
| 外文關鍵詞: | colorimetric detection, copper ions pollution, N,S-CQD, gold nanoparticle, water quality testing |
| ORCID: | 0009-0001-5322-8047 |
| 相關次數: | 點閱:127 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
[1] Mineral Commodity Summaries 2022. Mineral Commodity Summaries. Reston, Virginia: U.S. Geological Survey; 2022. p. 54-5.
[2] Release of ICSG 2022 Statistical Yearbook. Recent Press Releases: International Copper Study Group; 2022.
[3] 韓柏檉. 冰山一角──綠牡蠣事件. 科學月刊. 1989;237.
[4] Han B-C, Hung T-C. Green oysters caused by copper pollution on the Taiwan coast. Environmental Pollution. 1990;65:347-62.
[5] 韓博鈞. 銅科污染恐害及周邊土地 賴香伶呼籲科技部嚴格監測管理. 民眾網: 民眾新聞網; 2021.
[6] Xiong X, Yanxia L, Wei L, Chunye L, Wei H, Ming Y. Copper content in animal manures and potential risk of soil copper pollution with animal manure use in agriculture. Resources, Conservation and Recycling. 2010;54:985-90.
[7] Rehman M, Liu L, Wang Q, Saleem MH, Bashir S, Ullah S, et al. Copper environmental toxicology, recent advances, and future outlook: a review. Environmental science and pollution research. 2019;26:18003-16.
[8] Araya M, McGoldrick MC, Klevay LM, Strain J, Robson P, Nielsen F, et al. Determination of an acute no-observed-adverse-effect level (NOAEL) for copper in water. Regulatory Toxicology and Pharmacology. 2001;34:137-45.
[9] Desai V, Kaler SG. Role of copper in human neurological disorders. The American journal of clinical nutrition. 2008;88:855S-8S.
[10] Waggoner DJ, Bartnikas TB, Gitlin JD. The role of copper in neurodegenerative disease. Neurobiology of disease. 1999;6:221-30.
[11] Padhan SK, Murmu N, Mahapatra S, Dalai M, Sahu SN. Ultrasensitive detection of aqueous Cu 2+ ions by a coumarin-salicylidene based AIEgen. Materials Chemistry Frontiers. 2019;3:2437-47.
[12] Ding N, Zhou D, Pan G, Xu W, Chen X, Li D, et al. Europium-doped lead-free Cs3Bi2Br9 perovskite quantum dots and ultrasensitive Cu2+ detection. ACS Sustainable Chemistry & Engineering. 2019;7:8397-404.
[13] Gao Y, Chen B. Lead-Free Cs3Bi2Br9 Perovskite Quantum Dots for Detection of Heavy Metal Cu2+ Ions in Seawater. Journal of Marine Science and Engineering. 2023;11:1001.
[14] Sepúlveda B, Angelomé PC, Lechuga LM, Liz-Marzán LM. LSPR-based nanobiosensors. nano today. 2009;4:244-51.
[15] 陳敏瑋. 奈米金屬顆粒之表面電漿共振效應研究 2010.
[16] Willets KA, Van Duyne RP. Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem. 2007;58:267-97.
[17] Hutter E, Fendler JH. Exploitation of localized surface plasmon resonance. Advanced materials. 2004;16:1685-706.
[18] Mayer KM, Hafner JH. Localized surface plasmon resonance sensors. Chemical reviews. 2011;111:3828-57.
[19] Tweney RD. Discovering discovery: How Faraday found the first metallic colloid. Perspectives on Science. 2006;14:97-121.
[20] Jian Z, Yongchang W. Surface plasmon resonance enhanced scattering of Au colloidal nanoparticles. Plasma Science and Technology. 2003;5:1835.
[21] Zhu J, Wang Y, Huang L, Lu Y. Resonance light scattering characters of core–shell structure of Au–Ag nanoparticles. Physics Letters A. 2004;323:455-9.
[22] Pareek V, Bhargava A, Gupta R, Jain N, Panwar J. Synthesis and applications of noble metal nanoparticles: a review. Advanced Science, Engineering and Medicine. 2017;9:527-44.
[23] Jamkhande PG, Ghule NW, Bamer AH, Kalaskar MG. Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications. Journal of drug delivery science and technology. 2019;53:101174.
[24] Ullah M, Ali ME, Abd Hamid SB. SURFACTANT-ASSISTED BALL MILLING: A NOVEL ROUTE TO NOVEL MATERIALS WITH CONTROLLED NANOSTRUCTURE-A REVIEW. Reviews on Advanced Materials Science. 2014;37.
[25] 蕭章能, 朝春光. 以高分子分散劑作為奈米粉體濕式分散研磨, 界面改質及合成的研究 2007.
[26] Pérez-Tijerina E, Pinilla MG, Mejía-Rosales S, Ortiz-Méndez U, Torres A, José-Yacamán M. Highly size-controlled synthesis of Au/Pd nanoparticles by inert-gas condensation. Faraday discussions. 2008;138:353-62.
[27] Johnson GE, Moser T, Engelhard M, Browning ND, Laskin J. Fabrication of electrocatalytic Ta nanoparticles by reactive sputtering and ion soft landing. The Journal of Chemical Physics. 2016;145.
[28] Chandra R, Chawla A, Ayyub P. Optical and structural properties of sputter-deposited nanocrystalline Cu2O films: Effect of sputtering gas. Journal of nanoscience and nanotechnology. 2006;6:1119-23.
[29] Pandey PA, Bell GR, Rourke JP, Sanchez AM, Elkin MD, Hickey BJ, et al. Physical vapor deposition of metal nanoparticles on chemically modified graphene: observations on metal–graphene interactions. Small. 2011;7:3202-10.
[30] Pedersen H, Elliott SD. Studying chemical vapor deposition processes with theoretical chemistry. Theoretical Chemistry Accounts. 2014;133:1-10.
[31] George SM. Atomic layer deposition: an overview. Chemical reviews. 2010;110:111-31.
[32] Johnson RW, Hultqvist A, Bent SF. A brief review of atomic layer deposition: from fundamentals to applications. Materials today. 2014;17:236-46.
[33] 原子層沉積. 維基百科2021.
[34] 林千惠. 利用溶膠-凝膠法製備奈米級 SiO2 顆粒: 從物性鑑定到反應製程之最適化研究. 2007.
[35] Guzmán MG, Dille J, Godet S. Synthesis of silver nanoparticles by chemical reduction method and their antibacterial activity. Int J Chem Biomol Eng. 2009;2:104-11.
[36] Zhang Q-l, Yang Z-M, Ding B-j, Lan X-z, Guo Y-j. Preparation of copper nanoparticles by chemical reduction method using potassium borohydride. Transactions of Nonferrous Metals Society of China. 2010;20:s240-s4.
[37] Kimling J, Maier M, Okenve B, Kotaidis V, Ballot H, Plech A. Turkevich method for gold nanoparticle synthesis revisited. The Journal of Physical Chemistry B. 2006;110:15700-7.
[38] Tavakoli A, Sohrabi M, Kargari A. A review of methods for synthesis of nanostructured metals with emphasis on iron compounds. chemical papers. 2007;61:151-70.
[39] Kafle BP. Chapter 6 - Introduction to nanomaterials and application of UV–Visible spectroscopy for their characterization. In: Kafle BP, editor. Chemical Analysis and Material Characterization by Spectrophotometry: Elsevier; 2020. p. 147-98.
[40] Jang SP, Choi SU. Role of Brownian motion in the enhanced thermal conductivity of nanofluids. Applied physics letters. 2004;84:4316-8.
[41] Derjaguin B, Landau L. Theory of the stability of strongly charged lyophobic sols and the adhesion of strongly charged particles in solution of electrolytes. Acta Physicochim URSS. 1941;14:39.
[42] Verwey EJW. Theory of the stability of lyophobic colloids. The Journal of Physical Chemistry. 1947;51:631-6.
[43] Singh R, Thakur P, Thakur A, Kumar H, Chawla P, V. Rohit J, et al. Colorimetric sensing approaches of surface-modified gold and silver nanoparticles for detection of residual pesticides: a review. International Journal of Environmental Analytical Chemistry. 2021;101:3006-22.
[44] Taghdisi SM, Danesh NM, Lavaee P, Emrani AS, Ramezani M, Abnous K. A novel colorimetric triple-helix molecular switch aptasensor based on peroxidase-like activity of gold nanoparticles for ultrasensitive detection of lead (II). Rsc Advances. 2015;5:43508-14.
[45] Ou T-Y, Lo C-F, Kuo K-Y, Lin Y-P, Chen S-Y, Chen C-Y. Visual Cu2+ Detection of Gold-Nanoparticle Probes and its Employment for Cu2+ Tracing in Circuit System. Nanoscale Research Letters. 2022;17:1-7.
[46] Hu J, Ni P, Dai H, Sun Y, Wang Y, Jiang S, et al. A facile label-free colorimetric aptasensor for ricin based on the peroxidase-like activity of gold nanoparticles. RSC advances. 2015;5:16036-41.
[47] Kumar N, Seth R, Kumar H. Colorimetric detection of melamine in milk by citrate-stabilized gold nanoparticles. Analytical biochemistry. 2014;456:43-9.
[48] Yan J, Huang Y, Zhang C, Fang Z, Bai W, Yan M, et al. Aptamer based photometric assay for the antibiotic sulfadimethoxine based on the inhibition and reactivation of the peroxidase-like activity of gold nanoparticles. Microchimica Acta. 2017;184:59-63.
[49] Rohit JV, Basu H, Singhal RK, Kailasa SK. Development of p-nitroaniline dithiocarbamate capped gold nanoparticles-based microvolume UV–vis spectrometric method for facile and selective detection of quinalphos insecticide in environmental samples. Sensors and Actuators B: Chemical. 2016;237:826-35.
[50] Wang X, Yang Y, Dong J, Bei F, Ai S. Lanthanum-functionalized gold nanoparticles for coordination–bonding recognition and colorimetric detection of methyl parathion with high sensitivity. Sensors and Actuators B: Chemical. 2014;204:119-24.
[51] Rohit JV, Kailasa SK. 5-Sulfo anthranilic acid dithiocarbamate functionalized silver nanoparticles as a colorimetric probe for the simple and selective detection of tricyclazole fungicide in rice samples. Analytical Methods. 2014;6:5934-41.
[52] Rana K, Bhamore JR, Rohit JV, Park T-J, Kailasa SK. Ligand exchange reactions on citrate-gold nanoparticles for a parallel colorimetric assay of six pesticides. New Journal of Chemistry. 2018;42:9080-90.
[53] Xu Q, Du S, Jin G-d, Li H, Hu XY. Determination of acetamiprid by a colorimetric method based on the aggregation of gold nanoparticles. Microchimica Acta. 2011;173:323-9.
[54] Li H, Guo J, Ping H, Liu L, Zhang M, Guan F, et al. Visual detection of organophosphorus pesticides represented by mathamidophos using Au nanoparticles as colorimetric probe. Talanta. 2011;87:93-9.
[55] Chen N, Liu H, Zhang Y, Zhou Z, Fan W, Yu G, et al. A colorimetric sensor based on citrate-stabilized AuNPs for rapid pesticide residue detection of terbuthylazine and dimethoate. Sensors and Actuators B: Chemical. 2018;255:3093-101.
[56] Li Z, Wang Y, Ni Y, Kokot S. Unmodified silver nanoparticles for rapid analysis of the organophosphorus pesticide, dipterex, often found in different waters. Sensors and Actuators B: Chemical. 2014;193:205-11.
[57] Li D, Wang S, Wang L, Zhang H, Hu J. A simple colorimetric probe based on anti-aggregation of AuNPs for rapid and sensitive detection of malathion in environmental samples. Analytical and bioanalytical chemistry. 2019;411:2645-52.
[58] Wang Z, Huang Y, Wang D, Sun L, Dong C, Fang L, et al. A rapid colorimetric method for the detection of deltamethrin based on gold nanoparticles modified with 2-mercapto-6-nitrobenzothiazole. Analytical Methods. 2018;10:1774-80.
[59] Rawat KA, Majithiya RP, Rohit JV, Basu H, Singhal RK, Kailasa SK. Mg 2+ ion as a tuner for colorimetric sensing of glyphosate with improved sensitivity via the aggregation of 2-mercapto-5-nitrobenzimidazole capped silver nanoparticles. Rsc Advances. 2016;6:47741-52.
[60] Xiong D, Li H. Colorimetric detection of pesticides based on calixarene modified silver nanoparticles in water. Nanotechnology. 2008;19:465502.
[61] Sun J, Guo L, Bao Y, Xie J. A simple, label-free AuNPs-based colorimetric ultrasensitive detection of nerve agents and highly toxic organophosphate pesticide. Biosensors and Bioelectronics. 2011;28:152-7.
[62] Menon SK, Modi NR, Pandya A, Lodha A. Ultrasensitive and specific detection of dimethoate using ap-sulphonato-calix [4] resorcinarene functionalized silver nanoprobe in aqueous solution. RSC advances. 2013;3:10623-7.
[63] Zheng J, Zhang H, Qu J, Zhu Q, Chen X. Visual detection of glyphosate in environmental water samples using cysteamine-stabilized gold nanoparticles as colorimetric probe. Analytical Methods. 2013;5:917-24.
[64] Rohit JV, Solanki JN, Kailasa SK. Surface modification of silver nanoparticles with dopamine dithiocarbamate for selective colorimetric sensing of mancozeb in environmental samples. Sensors and Actuators B: Chemical. 2014;200:219-26.
[65] Lakade AJ, Sundar K, Shetty PH. Gold nanoparticle-based method for detection of calcium carbide in artificially ripened mangoes (Magnifera indica). Food Additives & Contaminants: Part A. 2018;35:1078-84.
[66] 食品化學檢驗方法之確效規範. In: 衛生福利部食品藥物管理署, editor.2010.
[67] 張育唐、陳藹然. Beer's Law. 科學 Online2011.
[68] 林清富. 色彩原理. What's fun in EE. 2013.
[69] Schanda J. Colorimetry: understanding the CIE system: John Wiley & Sons; 2007.
[70] Ye R, Peng Z, Metzger A, Lin J, Mann JA, Huang K, et al. Bandgap engineering of coal-derived graphene quantum dots. ACS applied materials & interfaces. 2015;7:7041-8.
[71] Kelly KL, Coronado E, Zhao LL, Schatz GC. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. ACS Publications; 2003. p. 668-77.
[72] 陳婷婷、莊雅雯. 動態光散射儀(DLS). 核心設施中心 微奈米科技組 e化系統2021.
[73] 勢動科技. 界達電位Zeta Potential原理?爲什麼重要?. 文件集. ACTTR 勢動科技: 勢動科技; 2021.
[74] Kuo K-Y, Chen S-H, Hsiao P-H, Lee J-T, Chen C-Y. Day-night active photocatalysts obtained through effective incorporation of Au@ CuxS nanoparticles onto ZnO nanowalls. Journal of Hazardous Materials. 2022;421:126674.
[75] Do PQT, Huong VT, Phuong NTT, Nguyen T-H, Ta HKT, Ju H, et al. The highly sensitive determination of serotonin by using gold nanoparticles (Au NPs) with a localized surface plasmon resonance (LSPR) absorption wavelength in the visible region. RSC advances. 2020;10:30858-69.
[76] Hsiao P-H, Timjan S, Kuo K-Y, Juan J-C, Chen C-Y. Optical management of CQD/AgNP@ SiNW arrays with highly efficient capability of dye degradation. Catalysts. 2021;11:399.
[77] Kajiura M, Nakanishi T, Iida H, Takada H, Osaka T. Biosensing by optical waveguide spectroscopy based on localized surface plasmon resonance of gold nanoparticles used as a probe or as a label. Journal of colloid and interface science. 2009;335:140-5.
[78] Priyadarshini E, Pradhan N. Gold nanoparticles as efficient sensors in colorimetric detection of toxic metal ions: a review. Sensors and Actuators B: Chemical. 2017;238:888-902.
[79] Knecht MR, Sethi M. Bio-inspired colorimetric detection of Hg 2+ and Pb 2+ heavy metal ions using Au nanoparticles. Analytical and bioanalytical chemistry. 2009;394:33-46.
[80] Hsiao P-H, Chen C-Y. Insights for realizing ultrasensitive colorimetric detection of glucose based on carbon/silver core/shell nanodots. ACS Applied Bio Materials. 2019;2:2528-38.
[81] Xiao D, Pan R, Li S, He J, Qi M, Kong S, et al. Porous carbon quantum dots: one step green synthesis via L-cysteine and applications in metal ion detection. RSC advances. 2015;5:2039-46.
[82] Ibrahim M, Alaam M, El-Haes H, Jalbout AF, Leon Ad. Analysis of the structure and vibrational spectra of glucose and fructose. Ecletica quimica. 2006;31:15-21.
[83] Parker SF. Assignment of the vibrational spectrum of L-cysteine. Chemical Physics. 2013;424:75-9.
[84] Lin C-Y, Yu C-J, Lin Y-H, Tseng W-L. Colorimetric sensing of silver (I) and mercury (II) ions based on an assembly of tween 20-stabilized gold nanoparticles. Analytical chemistry. 2010;82:6830-7.
[85] Hu CY, Jiang ZW, Huang CZ, Li YF. Cu2+-modified MOF as laccase-mimicking material for colorimetric determination and discrimination of phenolic compounds with 4-aminoantipyrine. Microchimica Acta. 2021;188:1-8.
[86] Aydin Z, Keles M. Colorimetric Detection of Copper (II) Ions Using Schiff‐Base Derivatives. ChemistrySelect. 2020;5:7375-81.
[87] Liu H, Cui S, Shi F, Pu S. A diarylethene based multi-functional sensor for fluorescent detection of Cd2+ and colorimetric detection of Cu2+. Dyes and Pigments. 2019;161:34-43.
[88] Liu L, Xie M-R, Fang F, Wu Z-Y. Sensitive colorimetric detection of Cu2+ by simultaneous reaction and electrokinetic stacking on a paper-based analytical device. Microchemical Journal. 2018;139:357-62.
[89] Joo DH, Mok JS, Bae GH, Oh SE, Kang JH, Kim C. Colorimetric Detection of Cu2+ and Fluorescent Detection of PO43–and S2–by a Multifunctional Chemosensor. Industrial & Engineering Chemistry Research. 2017;56:8399-407.
[90] Xiong J-J, Huang P-C, Zhang C-Y, Wu F-Y. Colorimetric detection of Cu2+ in aqueous solution and on the test kit by 4-aminoantipyrine derivatives. Sensors and Actuators B: Chemical. 2016;226:30-6.
[91] Sahu M, Manna AK, Rout K, Mondal J, Patra GK. A highly selective thiosemicarbazone based Schiff base chemosensor for colorimetric detection of Cu2+ and Ag+ ions and turn-on fluorometric detection of Ag+ ions. Inorganica Chimica Acta. 2020;508:119633.
[92] Luangphai S, Fongsiang J, Thuptimdang P, Buddhiranon S, Chanawanno K. Colorimetric Cu2+ Detection of (1 E, 2 E)-1, 2-Bis ((1 H-pyrrol-2-yl) methylene) hydrazine Using a Custom-Built Colorimeter. ACS Omega. 2022.
[93] Wang L, Wei Z-L, Chen Z-Z, Liu C, Dong W-K, Ding Y-J. A chemical probe capable for fluorescent and colorimetric detection to Cu2+ and CN− based on coordination and nucleophilic addition mechanism. Microchemical Journal. 2020;155:104801.
[94] Park SM, Saini S, Park JE, Singh N, Jang DO. A benzothiazole-based receptor for colorimetric detection of Cu2+ and S2− ions in aqueous media. Tetrahedron Letters. 2021;73:153115.
校內:2026-09-01公開