簡易檢索 / 詳目顯示

研究生: 吳柏憲
Wu, Bo-Hsien
論文名稱: 以DFT方法計算鋰離子電池中微孔隔離膜(PP/PE/PP)之晶格擴張行為
A DFT Study on Lattice Expansion of PP/PE/PP Micro-Porous Separator in Lithium-ion Battery
指導教授: 許文東
Hsu, Wen-Dung
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 65
中文關鍵詞: 隔離膜polyethylenepolypropylene鋰離子電池VASP
外文關鍵詞: separator, polyethylene, polypropylene, lithium ion battery, VASP
相關次數: 點閱:89下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鋰離子電池是現今被廣泛使用的二次電池之一,它可應用在可攜式的電子產品,甚至也被應用在需要大電力如電動車中,鋰離子電池主要是由一正極、一負極、隔離膜以及電解液所組成。
    本研究係針對由PP(polypropylene)/PE(polyethylene)/PP三層結構所組成的高分子隔離膜,隔離膜通常會置放於正極與負極之間,避免兩極直接接觸造成如短路等等的現象發生,以維持電池正常運作,而它必須擁有良好的離子傳導性、電化學穩定性以及好的機械性質,在電池運作期間只能允許鋰離子等通過,不參與其他任何反應。
    從X-ray diffraction (XRD)的實驗中可以觀察到PP/PE/PP三層隔離膜有五個主要的繞射峰值,由小至大分別代表PP(110)、PP(040)、PP(130)、PE(110) 及PE(200),從此可以得知隔離膜結構中除了非晶狀(amorphous)以外也有結晶狀(crystalline),其中PP(040) 和PE(200)兩峰值向小角度產生明顯的偏移,由布拉格定律(Bragg’s law)可以得知隔離膜晶格間距擴張,這個結果顯示原本認為不參與反應的隔離膜,可能與電解液中的離子或分子有交互作用。
    透過density functional theory(DFT)方法計算,並且使用Vienna Ab initio Simulation Package(VASP) 等軟體去模擬隔離膜在鋰離子電池中的行為,將不同的離子以及分子組合嵌入至隔離模中,其中若嵌入的是離子則會對此帶電系統(charge system)做能量修正,記錄各個能量並觀察晶格擴張變化,透過計算反應能(reaction energy)以及模擬XRD圖分析,便可以瞭解PP/PE/PP隔離膜在鋰離子電池中的機制。

    Separator composed of Polypropylene (PP)/Polyethylene (PE)/PP three-layer structure plays an important role in lithium-ion battery (LIB). It is placed in between anode and cathode to avoid physical contact of the two electrodes in order to keep the battery working well. It usually has high ionic conductivity, good electrochemical stability and good mechanical properties. In the past, separators are usually considered as an inert material in LIB, allowing only lithium ions transfer through its porous part. From our recent synchrotron X-ray diffraction (XRD) experiments, however, the peaks of PP and PE shift toward low angles. The results indicate that the crystalline part of PP and PE which originally been thought having no function in LIB is now may also participate in the reactions with lithium ions and electrolyte. In this research first-principles calculation with density function theory (DFT) as implement in Vienna Ab initio Simulation Package (VASP) were used to study the reactions of lithium ions and electrolyte with separator. Different combinations of lithium ion/ electrolyte molecule insertion were calculated to identify the possible mechanisms that are responsible for the peak shifting. From the reaction energies and the simulated XRD patterns we have revealed the mechanism for unexpected lattice expansion of PP/PE/PP micro-porous separator in lithium-ion battery.

    摘要 I A DFT Study on Lattice Expansion of PP/PE/PP Micro-Porous Separator in Lithium-ion Battery II 誌謝 XI 目錄 XII 表目錄 XIV 圖目錄 XV 第一章 前言 1 第二章 文獻回顧與實驗結果分析 5 2.1 鋰離子電池文獻回顧 5 2.1.1 正極材料 6 2.1.2 負極材料 8 2.1.3 電解液 9 2.1.4 隔離膜 11 2.2 隔離膜實驗結果分析[4] 13 第三章 原子級模擬基礎理論 16 3.1 第一原理(First-principle) 16 3.2 密度泛函理論(Density functional theory)[27] 16 3.3 勢能函數(Potential function) 20 3.4 贗勢(Pseudopotential) 21 3.5 平面波基底(Plane wave basis set) 22 3.6 溶劑化效應(Solvent effects) 23 3.7 周期性邊界(Periodic Boundary Condition) 24 3.8 帶電系統(charge system) 25 第四章 物理模型與模擬設計 27 4.1 模擬流程圖 27 4.2 MgO帶電系統模型介紹 28 4.3 隔離膜模型介紹 30 4.2.1 PE(polyethylene) 30 4.2.2 PP(polypropylene) 31 4.4 電解液中各分子模型介紹 32 4.5 模擬方法 33 4.5.1 vdw-DFT計算[41, 42] 33 4.5.2 solvation計算[37, 43, 44] 34 4.5.3 結構優化與能量收斂 34 4.6 分析方法 36 4.6.1 反應能(reaction energy) 36 4.6.2 晶格常數變化 36 4.6.3 XRD模擬分析 36 第五章 結果與討論 38 5.1 帶電系統能量計算 38 5.1.1 能量未修正 38 5.1.2 MgO帶電系統形成能試算 39 5.2 各分子、離子與團聚能量收斂結果 42 5.3 隔離膜晶格沿不同方向拉伸 43 5.4 各分子嵌入PE情形 44 5.4.1 純PE 45 5.4.2 PE+Li+ 46 5.4.3 PE+EC 47 5.4.4 PE+EC+Li+ 47 5.4.5 PE+F-、PE+LiF、PE+PF5 49 5.4.6 反應能計算 49 5.4.7 嵌入後的晶格變化 51 5.5 各分子嵌入PP情形 51 5.5.1 純PP 51 5.5.2 PP+Li+ 52 5.5.3 PP+EC 53 5.5.4 PP+EC+Li+ 54 5.5.5 PP+F-、PP+LiF、PP+PF5 55 5.5.6 反應能計算 56 5.5.7 嵌入後的晶格變化 57 5.6 XRD模擬分析 58 第六章 結論 60 參考文獻 62   表目錄 表4-1 VASP計算修正前後使用的參數 29 表4-2 各離子、分子與團聚結構圖 32 表5-1 MgO系統的K點收斂 39 表5-2 MgO系統結構收斂 39 表5-3 文獻與VASP計算修正前後形成能(eV)比較 41 表5-4 各離子、分子與團聚的能量隨box大小收斂過程 42 表5-5 各因子嵌入PE反應式之反應能 50 表5-6 PE嵌入後晶格大小變化(Å) 51 表5-7 各因子嵌入PP反應式之反應能 56 表5-8 PP嵌入後晶格大小變化(Å) 58   圖目錄 圖1-1 常見鋰離子電池示意圖[2] 1 圖1-2 鋰離子電池充放電示意圖[3] 2 圖1-3 純隔離膜以及充放電前後的XRD圖[4] 4 圖2-1 SONY生產的鋰離子電池規格[5] 5 圖2-2 不同正極材料的電容量關係圖[5] 7 圖2-3 常見正極材料結構示意圖[8] 7 圖2-4 石墨結晶度與電容量關係圖[5] 8 圖2-5 碳矽複合物與電容量關係圖[15] 9 圖2-6 常見鋰鹽之物理性質[17] 10 圖2-7 FEC添加劑量與電容量關係[19] 11 圖2-8 電極膨脹造成隔離膜孔洞縮小示意圖[26] 12 圖2-9 隔離膜材料之SEM圖 13 圖2-10 隔離膜之XRD圖 14 圖2-11純隔離膜以及充放電前後的XRD圖 15 圖3-1 高斯與平面波基底比較[36] 23 圖3-2 不同溶劑化模型之比較[37] 24 圖3-3 週期性邊界示意圖[38] 25 圖4-1 反應能計算示意圖 27 圖4-2 MgO的結構示意圖(藍色為鎂;紅色為氧;紫色為鋰)[40] 29 圖4-3 缺陷形成能(空心為使用Makov-Payne修正;實心為finite-size scaling;虛線則標示外差得到極稀薄濃度形成能)[40] 30 圖4-4 PE單位晶胞結構圖 30 圖4-5 PP單位晶胞結構圖 31 圖4-6 溶劑化計算流程示意圖 34 圖4-7 ISIF參數對系統自由度[45] 35 圖5-1 Li+嵌入數量與反應能關係圖 38 圖5-2 含defect之MgO結構示意圖 40 圖5-3 文獻與VASP修正前後形成能趨勢比較(不同Li的化學勢能) 41 圖5-4 PE沿垂直結晶面方向拉伸示意圖(a)(200)面(b)(110)面 43 圖5-5 PP沿垂直結晶面方向拉伸示意圖(a)(110)面(b)(040)面(c)(130)面 43 圖5-6 PE拉伸長度變化與能量變化關係圖 44 圖5-7 PP拉伸長度變化與能量變化關係圖 44 圖5-8 PE model放大成2x3x6的大小 45 圖5-9 PE model 能量收斂(a) K點(b)結構 45 圖5-10 PE+Li+位置示意圖(括號內為能量) 46 圖5-11 PE+2Li+位置示意圖(括號內為能量) 46 圖5-12 PE+3Li+位置示意圖(括號內為能量) 47 圖5-13 PE+EC位置示意圖(括號內為能量) 47 圖5-14 PE+EC+Li+ 兩種位置示意圖(括號內為能量) 48 圖5-15 PE嵌入不同數量的EC與Li+(括號內為能量) 48 圖5-16 PE+F-、PE+LiF、PE+PF5示意圖(括號內為能量) 49 圖5-17 PE嵌入因子以長條圖表示反應能大小 50 圖5-18 PP model放大成3x1x3的大小 52 圖5-19 PP+Li+位置示意圖(括號內為能量) 52 圖5-20 PP+2Li+位置示意圖(括號內為能量) 53 圖5-21 PP+3Li+位置示意圖(括號內為能量) 53 圖5-22 PP+EC位置示意圖(括號內為能量) 53 圖5-23 PE+EC+Li+位置示意圖(括號內為能量) 54 圖5-24 PP嵌入不同數量的EC與Li+(括號內為能量) 55 圖5-25 PP+F 、PP+LiF、PP+PF5示意圖(括號內為能量) 56 圖5-26 PP嵌入因子以長條圖表示反應能大小 57 圖5-27 PE的模擬XRD圖 58 圖5-28 PP的模擬XRD圖 59

    1. Yang, M. and J. Hou, Membranes in lithium ion batteries. Membranes, 2012. 2(3): p. 367-383.
    2. Xu, K., Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chemical reviews, 2004. 104(10): p. 4303-4418.
    3. https://physicsandsocietybc.wordpress.com/2013/04/03/the-rocking-chair-battery-lithium-ion-battery/.
    4. Data from Prof. Chia-Chin Chang, Prof. Tsan-Yao Chen, Dr. Po-Wei Yang, Mr. Yu-Fan Chen and Mrs. Pin-Ching Wu
    5. Nishi, Y., Lithium ion secondary batteries; past 10 years and the future. Journal of Power Sources, 2001. 100(1): p. 101-106.
    6. Wakihara, M., Recent developments in lithium ion batteries. Materials Science and Engineering: R: Reports, 2001. 33(4): p. 109-134.
    7. Scrosati, B., Recent advances in lithium ion battery materials. Electrochimica Acta, 2000. 45(15): p. 2461-2466.
    8. Thackeray, M., Lithium-ion batteries: An unexpected conductor. Nature Materials, 2002. 1(2): p. 81-82.
    9. Agostini, M., S. Brutti, and J. Hassoun, High voltage Li-ion battery using exfoliated graphite/graphene nanosheets anode. ACS applied materials & interfaces, 2016. 8(17): p. 10850-10857.
    10. Guo, P., H. Song, and X. Chen, Electrochemical performance of graphene nanosheets as anode material for lithium-ion batteries. Electrochemistry Communications, 2009. 11(6): p. 1320-1324.
    11. Fu, L., et al., Surface modifications of electrode materials for lithium ion batteries. Solid State Sciences, 2006. 8(2): p. 113-128.
    12. Novikov, D., et al., Electrochemical performance and surface chemistry of nanoparticle Si@ SiO 2 Li-ion battery anode in LiPF 6-based electrolyte. Electrochimica Acta, 2016. 208: p. 109-119.
    13. Farmakis, F., et al., High energy density amorphous silicon anodes for lithium ion batteries deposited by DC sputtering. Journal of Power Sources, 2015. 293: p. 301-305.
    14. Chen, Y., et al., High capacity, stable silicon/carbon anodes for lithium-ion batteries prepared using emulsion-templated directed assembly. ACS applied materials & interfaces, 2014. 6(7): p. 4678-4683.
    15. Wen, Z., et al., High capacity silicon/carbon composite anode materials for lithium ion batteries. Electrochemistry Communications, 2003. 5(2): p. 165-168.
    16. Aurbach, D., et al., Design of electrolyte solutions for Li and Li-ion batteries: a review. Electrochimica Acta, 2004. 50(2): p. 247-254.
    17. 工業材料雜誌302期.
    18. Xu, K., et al., LiBOB as salt for lithium-ion batteries: a possible solution for high temperature operation. Electrochemical and Solid-State Letters, 2002. 5(1): p. A26-A29.
    19. Bordes, A., K. Eom, and T.F. Fuller, The effect of fluoroethylene carbonate additive content on the formation of the solid-electrolyte interphase and capacity fade of Li-ion full-cell employing nano Si–graphene composite anodes. Journal of Power Sources, 2014. 257: p. 163-169.
    20. Chen, L., et al., Effect of vinylene carbonate (VC) as electrolyte additive on electrochemical performance of Si film anode for lithium ion batteries. Journal of Power Sources, 2007. 174(2): p. 538-543.
    21. Jung, H.M., et al., Fluoropropane sultone as an SEI-forming additive that outperforms vinylene carbonate. Journal of Materials Chemistry A, 2013. 1(38): p. 11975-11981.
    22. Li, B., et al., Prop-1-ene-1, 3-sultone as SEI formation additive in propylene carbonate-based electrolyte for lithium ion batteries. Electrochemistry Communications, 2012. 17: p. 92-95.
    23. Xia, J., et al., Study of methylene methanedisulfonate as an additive for Li-ion cells. Journal of The Electrochemical Society, 2014. 161(1): p. A84-A88.
    24. Huang, X., Separator technologies for lithium-ion batteries. Journal of Solid State Electrochemistry, 2011. 15(4): p. 649-662.
    25. Zhang, S.S., A review on the separators of liquid electrolyte Li-ion batteries. Journal of Power Sources, 2007. 164(1): p. 351-364.
    26. Peabody, C. and C.B. Arnold, The role of mechanically induced separator creep in lithium-ion battery capacity fade. Journal of Power Sources, 2011. 196(19): p. 8147-8153.
    27. 江進福, 波函數與密度泛函.
    28. Cohen, A.J., P. Mori-Sánchez, and W. Yang, Insights into current limitations of density functional theory. Science, 2008. 321(5890): p. 792-794.
    29. Gross, E. and W. Kohn, Time-dependent density-functional theory. Advances in quantum chemistry, 1990. 21: p. 255-291.
    30. Kohn, W., Nobel Lecture: Electronic structure of matter—wave functions and density functionals. Reviews of Modern Physics, 1999. 71(5): p. 1253.
    31. Parr, R.G., Density functional theory of atoms and molecules, in Horizons of Quantum Chemistry. 1980, Springer. p. 5-15.
    32. Car, R. and M. Parrinello, Unified approach for molecular dynamics and density-functional theory. Physical review letters, 1985. 55(22): p. 2471.
    33. Jones, R.O. and O. Gunnarsson, The density functional formalism, its applications and prospects. Reviews of Modern Physics, 1989. 61(3): p. 689.
    34. Kresse, G. and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B, 1999. 59(3): p. 1758.
    35. Kittel, C., Introduction to Solid State Physics. 1996: Wiley.
    36. Bylaska, E.J. Introduction to Plane-Wave Basis Sets and Pseudopotential Theory.
    37. Neerav Kharche, C.D., Brookhaven National Laboratory, VASP Calculations With Model Solvation. 2014.
    38. Le Roux, S. and V. Petkov, ISAACS–interactive structure analysis of amorphous and crystalline systems. Journal of Applied Crystallography, 2010. 43(1): p. 181-185.
    39. Seebauer, E.G. and M.C. Kratzer, Charged point defects in semiconductors. Materials Science and Engineering: R: Reports, 2006. 55(3): p. 57-149.
    40. Richter, N., Charged point defects in oxides–a case study of MgO bulk and surface F centers. 2013, Technische Universität Berlin.
    41. Klimeš, J., D.R. Bowler, and A. Michaelides, Chemical accuracy for the van der Waals density functional. Journal of Physics: Condensed Matter, 2009. 22(2): p. 022201.
    42. Klimeš, J., D.R. Bowler, and A. Michaelides, Van der Waals density functionals applied to solids. Physical Review B, 2011. 83(19): p. 195131.
    43. Mathew, K. and R.G. Hennig, Implicit self-consistent description of electrolyte in plane-wave density-functional theory. arXiv preprint arXiv:1601.03346, 2016.
    44. Mathew, K., et al., Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways. The Journal of chemical physics, 2014. 140(8): p. 084106.
    45. http://cms.mpi.univie.ac.at/vasp/guide/node112.html

    下載圖示 校內:2017-09-01公開
    校外:2017-09-01公開
    QR CODE