簡易檢索 / 詳目顯示

研究生: 林瑋晟
Lin, Wei-Cheng
論文名稱: 低溫下降低場效電晶體的供應電壓特性分析以萃取不同技術節點之元件參數與最大化功率效能
MOSFET Characterization with Reduced Supply Voltage at Low Temperatures for Device Parameter Extraction and Power Efficiency Maximization Based on Different Technology Nodes
指導教授: 高國興
Kao, Kuo-Hsing
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 奈米積體電路工程碩士博士學位學程
MS Degree/Ph.D. Program on Nano-Integrated-Circuit Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 84
中文關鍵詞: 場效電晶體功耗量子計算高效能計算次臨界擺幅次臨界擺幅飽和供應電壓
外文關鍵詞: MOSFET, power consumption, quantum computing, high performance computing, subthreshold swing, subthreshold swing saturation, supply voltage
相關次數: 點閱:63下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著微影製程技術的進步,摩爾定律逐漸達到物理限制並開始遇到瓶頸,進而導致半導體產業開始追求"More than Moore"的策略。這種策略不再僅是追求縮小電晶體尺寸,開始開發許多新的材料與技術。本研究旨在探討低溫下半導體元件的應用,考慮到在低溫條件下,MOSFET 具有較高的電子遷移率和更陡峭的次臨界擺幅。
    此外,低溫條件下的應用也相當廣泛,包括高性能計算和量子計算。然而,在這些新型應用中,由於MOSFET 的功耗造成的過多熱量,已經成為互補式金氧半電晶體(CMOS)運作的主要挑戰之一。雖然降低溫度似乎有利於縮小供應電壓 VDD 和降低功耗,但 VDD 和 T 之間的相關性如何影響裝置性能和功耗效率,目前仍不完全清楚。
    在此篇研究中,我們提出了一項全面的研究,針對在從 300 到 10 K 的溫度範圍內,對不同 VDD下的 MOSFET 進行了功率性能的評估。我們發現由於次臨界擺幅的飽和現象,限制了 VDD 的進一步縮放。然而,我們也發現在T ≦ 100 K 的條件下,且在不同技術節點之間,分別存在著最適合的 VDD(T) 並能有效提高元件的功耗效率,從而在低溫條件下改善裝置的性能。為了進一步深化我們的理解,我們建立了一個擬合模型來萃取能帶尾參數。這個模型使我們能夠在不同的技術節點下進行深入的分析,並從結果發現了高斯分布的接面能態會隨著溫度變化。以上這些結果對於未來低溫應用的設計與優化,將提供重要的參考和指引。

    With the advancement of photolithography process technology , the physical limitations have gradually made Moore's Law reach a bottleneck, leading the semiconductor industry to begin pursuing a "More than Moore" strategy. This strategy goes beyond merely minimizing transistor dimensions and includes the development of numerous new materials and technologies. The aim of this study is to investigate the application of semiconductor components at low temperatures, considering that MOSFETs exhibit higher electron mobility and steeper subthreshold swing under l ow temperature conditions.
    Additionally, there are a wide range of applications for low temperature operations,including High Performance Computing (HPC) and Quantum Computing (QC). However, in these novel applications, the undesired heat produced by the power consumption of MOSFET s has become one of the main challenges for the operation of Complementary Metal Oxide Semiconductor (CMOS). Although reducing the temperature (T) seems beneficial for supply voltage (???) scaling and power reduction, the relationships between ??? and T and how they affect device performance and power consumption remain unclear.
    In this study, we present a comprehensive investigation focusing on the power performance evaluation of MOSFETs under different ? ?? within a temperature range from 300 to 10 K. We found that the saturation of the subthreshold swing restricts further ??? scaling. However, we also found that under conditions T≦ 100 K and across different technology nodes, there exist optimal ? ?? ? values that effectively enhance the power efficiency of the devices, thereby improving their performance at low temperatures. To deepen our understanding, we established a fitting model to extract the band tail parameter. This model enables us to conduct in depth analysis across different technology nodes and reveals that the interface states follow a Gaussian distribution that varies with temperature. These findings will provide crucial references and guidance for future designs and optimizations of low temperature applications.

    摘要Ⅰ Abstract Ⅱ 致謝 III Content Ⅳ Table captions Ⅵ Figure captions Ⅶ Chapter 1: Introduction and Motivation 1 1.1 Moore’s Law and More than Moore’s 1 1.2 Transfer Characteristics of MOSFETs at Cryogenic Temperature 6 1.2.1 Mobility 7 1.2.2 Threshold Voltage Roll Up 9 1.2.3 Subthreshold Swing Saturation 11 1.3 Application of Cryogenic CMOS 14 1.3.1 High Performance Computing 15 1.3.2 Quantum Computer 17 1.3.3 Power Dissipation of Cryogenic CMOS 20 1.4 Motivation 21 1.5 Device Under Test 23 1.6 Measurement Setup 24 Chapter 2: Supply Voltage VDD Scaling with Lowering Temperature 29 2.1 Methodology for VDD(T) Formula and VDD saturation 29 2.2 Definition of the Device Performance and Power Efficiency 31 Chapter 3: Band Tail Extraction 35 3.1 Physic Models 35 3.2 Constructing a Fitting Model with Python 37 3.2.1 Algorithm of Fitting Model 38 3.2.2 Mathematics of the Algorithm 39 3.3 Fitting Procedure 40 Chapter 4: Result and Discussion 43 4.1 Device Performance 43 4.2 Power Efficiency 45 4.3 Band Tail Parameter Extraction 50 Chapter 5: Conclusions and Future Work 56 5.1 Conclusions 56 5.2 Future Work 56 References 57 Appendix I 60 Appendix II 65

    [1] Gordon E. Moore, “Cramming More Components onto Integrated Circuits,” Electronics, pp. 114 117, April 19, 1965.
    [2] https://www.appliedmaterials.com/
    [3] https://www.asml.com/en/products/euv lithography systems
    [4] https://www.apple.com/tw
    [5] https://www.apple.com/tw
    [6] Y. Liu, L. Lang, Y. Chang, Y. Shan, X. Chen and Y. Dong, "Cryogenic Characteristics of Multinanoscales Field Effect Transistors," in IEEE Transactions on Electron Devices, vol. 68, no. 2,pp.456 463,Feb.2021,doi: 10.1109/TED.2020.3041438.
    [7] Sze, S. M., Semiconductor Devices (Wiley, New York, 1985) p.
    [8] Y. Taur and T. H. Ning, Fundamentals of Modern VLSI Devices,vol. 6. Cambridge, U.K.: Cambridge Univ. Press, 1998, ch. 3.1.4-3.1,pp. 120–131.
    [9] A. Beckers, F. Jazaeri, and C. Enz, “Cryogenic MOSFET threshold voltage model,” in Proc. ESSDERC 49th Eur. Solid-State Device Res. Conf. (ESSDERC), Sep. 2019, pp. 94–97.
    [10] S.M.Sze, Kwok K.Ng, Physics of Semiconductor Devices, 3 ed, Wiley, 2006
    [11] A. Beckers, F. Jazaeri and C. Enz , "Cryogenic MOS Transistor Model," in IEEE Transactions on Electron Devices, vol. 65, no. 9, pp. 3617 3625, Sept. 2018, doi: 10.1109/TED.2018.2854701.
    [12] H. Bohuslavskyi, A. G. M. Jansen, S. Barraud, V. Barral, M. Cassé, L. Le Guevel, X. Jehl, L. Hutin, B. Bertrand, G. Billiot, G. Pillonnet, F. Arnaud, P. Galy, S. De Franceschi, M. Vinet, and M. Sanquer, “Cryogenic subthreshold swing saturation in FD SOI MOSFETs described with band broadening,” IEEE Electron Device Lett., vol. 40, no. 5, pp. 784 787, May 2019.
    [13] H. Bohuslavskyi, “Cryogenic electronics and quantum dots on siliconon insulator for quantum computing,” Ph.D. dissertation, Laboratoired’Electronique et de Technologie del’Information, Communauté Université Grenoble Alpes, Gières, France, 2016, ch. 4
    [14] A. Beckers, F. Jazaeri and C. Enz, "Theoretical Limit of Low Temperature Subthreshold Swing in Field Effect Transistors," in IEEE Electron Device Letters, vol. 41, no. 2, pp. 276 279, Feb. 2020, doi: 10.1109/LED.2019.2963379.
    [15] K. H. Kao et al., "Subthreshold Swing Saturation of Nanoscale MOSFETs Due to Source to Drain Tunneling at Cryogenic Temperatures," in IEEE Electron Device Letters, vol. 41, no. 9, pp. 1296 1299, Sept. 2020, doi: 10.1109/LED.2020.3012033.
    [16] E. A. Gutierrez D, J. Deen, and C. Claeys, Low Temperature Electronics: Physics, Devices, Circuits, and Applications. Amsterdam, The Netherlands: Elsevier, 2000.
    [17] F. Balestra and G. Ghibaudo, Device Circuit Cryogenic Operation For Low Temperature Electronics. New York, NY, USA: Springer, 2001.
    [18] M. J. Deen, “Cryogenic operation of CMOS based microsystems and computers,” Microprocessors Microsyst., vol. 13, no. 4, pp. 245 253, May 1989. [Online]. Available: http://www.sciencedirect.com/science/ article/pii/0141933189900628
    [19] IEEE,“Cryogenic Electronics and Quantum Information Processing”, International roadmap for Device and Systems (IRDS), 2021.
    [20] https://www.ornl.gov/news/ornl launches summit supercomputer
    [21] https://hbctraining.github.io/Intro to shell flipped/lessons/01_the_filesystem.html
    [22] https://inhabitat.com/facebooks fancy new server farm will be cooled naturally by arctic air/facebook lulea node pole4
    [23] https://www.newscientist.com/article/2283945 google demonstrates vital step towards large scale quantum computers
    [24] B. Patra et al., "Cryo CMOS Circuits and Systems for Quantum Computing Applications," in IEEE Journal of Solid State Circuits, vol. 53, no. 1, pp. 309 321, Jan. 2018, doi: 10.1109/JSSC.2017.2737549.
    [25] A. A. Artanov et al., "Self Heating Effect in a 65 nm MOSFET at Cryogenic Temperatures," in IEEE Transactions on Electron Devices, vol. 69, no. 3, pp. 900 904, March 2022, doi: 10.1109/TED.2021.3139563.
    [26] J. M. Rabaey, Low Power Design Essentials, New York, NY: Springer New York,
    [27] Wang, Shea Jue et al. (2015). Kink effect for 28nm n channel field effect transistors after decoupled plasma nitridation treatment with annealing temperatures. International Journal of Nanotechnology. 12. 59 73. 10.1504/IJNT.2015.066194.
    [28] S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, 3rd ed. New York, NY, USA: Wiley, 2007.
    [29] IEEE, “More Moore”, International roadmap for Device and Systems (IRDS), 2021.
    [30] A. Beckers, F. Jazaeri and C. Enz , "Inflection Phenomenon in Cryogenic MOSFET Behavior," in IEEE Transactions on Electron Devices, vol. 67, no. 3, pp. 1357 1360, March 2020, doi: 10.1109/TED.2020.2965475.
    [31] J. Kennedy and R. Eberhart, "Particle swarm optimization," Proceedings of ICNN'95 International Conference on Neural Networks, Perth, WA, Australia, 1995, pp. 1942 1948 vol.4, doi: 10.1109/ICNN.1995.488968.
    [32] https://blog.stratio.com/swarm intelligence metaheuristics part 2 particle swarm optimization/
    [33] https://medium.com/@kmes990402081/python --%E5%AF%A6%E4%BD%9C particle swarm optimization pso%E7%B2%92%E5%AD%90%E7%BE%A4%E6%9C%80%E4%BD%B3%E5%8C%96ba173ed936ca
    [34] https://jingwen z.github.io/what is box plot/
    [35] Haruna Tada Amy E. Kumpel Richard E. Lathrop John B. Slanina Patricia Nieva Paul Zavracky Ioannis N. Miaoulis Peter Y. Wong; Thermal expansion coefficient of polycrystalline silicon and silicon dioxide thin films at high temperatures. Journal of Applied Physics 1 May 2000; 87 (9): 4189 4193. https://doi.org/10.1063/1.373050
    [36] A. Beckers, F. Jazaeri and C. Enz, "Characterization and Modeling of 28 nm Bulk CMOS Technology Down to 4.2 K," in IEEE Journal of the Electron Devices Society, vol. 6, pp. 1007 1018, 2018, doi: 10.1109/JEDS.2018.2817458.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE