簡易檢索 / 詳目顯示

研究生: 蔡世桓
Tsai, Shih-Heng
論文名稱: 中空雙鋼管混凝土柱受軸壓及彎矩載重之非線性分析
Nonlinear Analysis of Double-Skin Concrete Filled Tube Subject to Axial Compression and Bending Moment
指導教授: 胡宣德
Hu, Hsuan-Teh
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 121
中文關鍵詞: 軸壓彎矩非線性中空雙鋼管混凝土柱
外文關鍵詞: DS-CFT, Nonlinear, CFT
相關次數: 點閱:74下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文主要利用ABAQUS軟體分析探討雙鋼管混凝土柱(DS-CFT)受到純彎矩、純軸壓以及固定軸壓下施加純彎矩的行為,並將分析結果與國家地震中心實驗數據比較,藉此可以瞭解混凝土在這些載重作用下的DS-CFT中可能產生之圍壓(Fl)效果、混凝土軟化參數(K3)以及混凝土強度折減係數(K4),如此將可得知混凝土在DS-CFT中所能產生之效益,以及推算材料參數用的經驗公式。

    由分析的結果可知,在純彎矩作用下,雖然因缺乏軸壓而無法讓混凝土之耐壓特性充分發揮,因而強度相較於其他試體相對的低,但是DS-CFT仍然能提供一定程度的圍壓,整體而言DS-CFT所能提供的圍壓比CFT要來的大上許多。

    同時也發現,CFT的經驗公式以及K2不適用於DS-CFT的試體,CFT試體使用的K2值會造成試體應變過大而偏軟,因此本文做了反覆的多次嘗試,歸納出新的K2後,重新進行分析而找出了每根試體所適用的材料參數與經驗公式。

    This paper use ABAQUS software to analyse the Double-Skin Concrete Filled Tubes (DS-CFT) that subject to axial compression and bending moment, then compare the analysis results with experimental data of national earthquake center. By the way, we can find the Fl, K3, and K4 of a DS-DFT subject to such loads, understand the benefit that concrete can produce in DS-CFT so, and calculate the experience formulas used for material parameters.

    By the result analysing, we can find that the specimen under pure bending can’t let the concrete keep its compressive resistibility because of lacking the axial compression, therefore the strength of such specimen is less than others, but DS-CFT can still offer a certain Fl that is much stronger than CFT.

    Besides, we find the experience formula and K2 of CFT are not suitable for DS-CFT specimens, K2 value of CFT will lead to a strain that is too large. so this paper repeated trying for many times, induct new values of K2, and find out the suitable material parameters and experience formulas again.

    摘要…………………………………………………………………………………I Abstract……………………………………………………………………………II 目錄…………………………………………………………………………………III 圖表目錄……………………………………………………………………………...V 符號對照表……………………………………………………………………..……IX 第一章 序論…………………………………………………………………………..1 1.1 文獻回顧……………………………………………………………………….2 1.2 研究動機與目的……………………………………………………………….7 1.3 本文內容……………………………………………………………………….8 第二章 鋼管混凝土的材料行為……………………………………………………..9 2.1 混凝土的材料特性…………………………………………………………….9 2.1.1 混凝土的單軸行為……………………………………………………..9 2.1.2 混凝土的雙軸行為……………………………………………………13 2.1.3 混凝土的三軸行為……………………………………………………14 2.2 鋼的材料特性………………………………………………………………...18 2.3 本文所分析之試體及其材料性質…………………………………………...20 2.3.1 設計軸壓強度規範……………………………………………………20 2.3.2 試體編號及材料性質…………………………………………………22 第三章 材料組合率與降伏準則……………………………………………………24 3.1 降伏準則與材料參數………………………………………………………...24 3.1.1 The Drucker-Prager降伏準則………………………………………….24 3.1.2 模擬混凝土之降伏準則………………………………………………25 3.1.3 降伏方程式……………………………………………………………26 3.1.4 決定材料參數…………………………………………………………30 3.2 混凝土強度修正……………………………………………………………...32 第四章 試體的模擬與收歛性分析…………………………………………………34 4.1 元素介紹……………………………………………………………………...34 4.1.1 C3D20R元素…………………………………………………………..34 4.1.2 B32元素………………………………………………………………..35 4.2 試體的模擬…………………………………………………………………...36 4.2.1 DS-CFT單軸彎矩實驗………………………………………………...36 4.2.2 ABAQUS/CAE模擬DS-CFT單軸彎矩………………………………37 4.2.3 DS-CFT單軸彎矩實驗數據分析……………………………………...43 4.3 收歛性分析…………………………………………………………………...45 4.3.1 元素切割與分析結果…………………………………………………45 第五章 數值分析結果與討論………………………………………………………49 5.1 K2 = 20.5之試體分析結果…………………………………………………...49 5.1.0 分析前提………………………………………………………………49 5.1.1 DS-06-4-2-25…………………………………………………………...51 5.1.2 DS-06-2-2-25…………………………………………………………...53 5.1.3 DS-06-4-2-40…………………………………………………………...55 5.1.4 DS-06-2-2-40…………………………………………………………...57 5.1.5 DS-06-4-2-70…………………………………………………………...59 5.1.6 DS-06-2-2-70…………………………………………………………...61 5.2 K2 = 20.5之試體分析結論…………………………………………………...63 5.3 採用新K2值之試體分析結果………………………………………………64 5.3.0 分析前提………………………………………………………………64 5.3.1 DS-06-4-2-0…………………………………………………………….65 5.3.2 DS-06-4-2-0…………………………………………………………….67 5.3.3 DS-06-4-2-25………………………………………..………………….69 5.3.4 DS-06-4-2-25…………………………………………..……………….71 5.3.5 DS-06-4-2-40…………………………………………..……………….73 5.3.6 DS-06-4-2-40………………………………………..………………….75 5.3.7 DS-06-4-2-70………………………………………..………………….77 5.3.8 DS-06-4-2-70…………………………………..……………………….79 5.3.9 DS-06-4-2-C…………………...……………………………………….81 5.3.10 DS-06-4-2-C…………………….…………………………………….83 5.4 採用新K2值之試體分析結論……………………………………...……….85 5.5 修正後的圍壓與強度折減係數……………………………………………...87 5.6 Fl、K3和K4與軸力比之關係………………………………………………88 5.6.1 外鋼管厚4公釐 (DS-06-4-2系列)…………………………….…….88 5.6.2 外鋼管厚2公釐 (DS-06-2-2系列)…………………………………..91 5.7 極限應力之模擬……………………………………………………………...92 第六章 結論與建議……………………………………………………………..…103 6.1 結論………………………………………………………………………….103 6.2 建議………………………………………………………………………….105 參考文獻……………………………………………………………………………106 附錄A(ABAQUS/CAE建立DS-06-4-2-40之input檔)………………………….109

    1、Chen, W. F. and Saleeb, A. F., Constitutive Equations for Engineering Materials Volume 1: Elasticity and Modeling, Second, Revised Edition, Elsevier, 1994.

    2、Chen, W. F. and Han, D. J., Plasticity For Structural Engineers , 1995 .

    3、Elchalakani, M., Zhao, X.L. and Grzebieta, R.H., “Concrete-filled circular steel tubes subjected to pure bending”, Journal of constructional steel research, Vol. 57, Issue: 11, November, 2001, pp. 1141-1168

    4、Ge, H. B. and Usami, T., “Strength of Concrete-Filled Thin-Walled Steel Box Columns : Experiment”, Journal of Structural Engineering, Vol. 118, No. 11, November 1992, pp. 3036-3054.

    5、Ge, H.B. and Usami, T. , “Strength Analysis of Concrete-Filled Thin-Walled Steel Box Columns”, Journal of Construct Steel Research, Vol. 30, 1994, pp. 259-281

    6、Hibbitt, Karlsson, and Sorensen, Inc, ABAQUS User’s Manual ,Version 6.3, 2003.

    7、Hu, H. T., Huang, C. S. and Chen, Z. L., “Finite element analysis of CFT columns subjected to an axial compressive force and bending moment in combination”, Journal of Constructional Steel Research, Vol. 61, 2005, pp. 1692–1712.

    8、Hu, H. T., Huang, C. S., Wu, M. H. and Wu, Y. M., “Nonlinear Analysis of Axially Loaded Concrete-Filled Tube Columns with Confinement Effect”, JOURNAL OF STRUCTURAL ENGINEERING, October 2003, pp. 1322–1329.

    9、Mander, J. B., Priestly, M. J. N. and Park, R., “Theoretical Stress-strain Model For Confined Concrete”, Journal of Structural Engineering, Vol. 114, No. 8, August 1988, pp. 1804-1823.

    10、Mentrey, P., and Willam, K. J., “Triaxial Failure Criterion for Concrete and Its Generalization”, ACI Structural Journal, Vol. 92, No. 3 , May-June 1995, pp. 311-318.

    11、Nawy, E. G., Reinforced Concrete a Fundamental Approach,3rd ed, 1996, pp. 46.

    12、Richart, F. E., Brandtzaeg, A. and Brown, R. L. “A Study of the Failure of Concrete under Combined Compressive Stresses ”, Bulletin 185, Univ. of Illinois Engineering Experimental Station, Champaign, Ill, 1928.

    13、Schneider, S. P., “AxiallyLoaded Concrete-Filled Steel Tubes”, Journal of Structural Engineering, Vol. 124, No. 10, October 1998, pp. 1125-1138.

    14、Saenz, L. P., Discussion of “Equation for the Stress-Strain Curve of Concrete” by Desayi, P. and Krishnan, S., ACI Journal, Vol. 61, No. 9, 1964, pp. 1229-1235.

    15、Sheu, M. S., Figure and Tables For Behavior of Reinforced Concrete Class Notes, Department of Architecture, National Cheng Kung University Tainan, Taiwan, R.O.C., 2001.

    16、Uy, B., “Local and Post-local Buckling of Concrete Filled Steel Welded Box Columns”, Journal of Construct Steel Research, Vol. 47, 1998, pp. 47-72.

    17、 吳明憲,“加勁鋼管混凝土構材受軸力行為之數值分析”,國立成功大學土木工程系,碩士論文, 民國八十九年六月。

    18、劉季宇, 葉勇凱, 黃炯憲, 蔡克銓和孫維隆,“方形加勁鋼管混凝土柱受軸壓與彎矩之行為研究”, 國家地震工程研究中心研究報告, NCREE-00-008, 民國八十九年八月。

    19、吳逸民, “鋼管混凝土柱數值模擬之研究”,國立成功大學土木工程系,碩士論文,民國九十年六月。

    20、陳致良, “鋼管混凝土柱受軸壓與彎矩之行為分析”,國立成功大學土木工程系,碩士論文,民國九十一年六月。

    21、石明隴, “高強度鋼管混凝土柱數值模擬之研究”, 國立成功大學土木工程系,碩士論文,民國九十二年六月。

    22、謝明芳, “鋼管混凝土構建之耐震行為研究”, 國立台北科技大學土木與防災研究所,碩士論文,民國九十二年七月。

    23、蘇峰堅, “鋼管混凝土柱受純彎矩行為之數值模擬”, 國立成功大學土木工程系,碩士論文,民國九十三年六月。

    24、張嘉興, “鋼管混凝土柱受軸壓及雙向彎矩載重之非線性分析”, 國立成功大學土木工程系,碩士論文,民國九十四年六月。

    25、蔡克銓, 林敏郎, “中空雙鋼管混凝土柱力學行為研究”, 國家地震工程研究中心,NCREE-02-017,民國九十一年十二月。

    下載圖示 校內:2007-07-28公開
    校外:2007-07-28公開
    QR CODE