簡易檢索 / 詳目顯示

研究生: 謝仁翔
Hsieh, Jen-Hsiang
論文名稱: 量化量子過程之研究及其應用
Theory of Quantifying Quantum-Mechanical Processes and its Applications
指導教授: 李哲明
Li, Che-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 126
中文關鍵詞: 古典過程量子過程量化量子過程
外文關鍵詞: Classical process, Quantum processes, Quantifying quantum processes
相關次數: 點閱:78下載:17
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 物理過程描述了初始態根據過程的特性與規則演化到特定的末態。在量子科技領域裡,像是量子計算中的邏輯閘運算與量子量測等,往往都必須處理過程方面的問題,然而於現實實驗中,可能因環境干擾或實驗上不可預期之因素導致實驗過程不符合預期中的目標量子過程甚至是喪失其非古典特性,因此評估量子過程的品質成為了一個很重要的課題。在本篇論文裡,我們提出了一個全新的古典過程觀念,再進一步結合數值方法開發出廣泛的量化量子過程之工具,且在計算資源可行的情況下,我們的工具可適用於高維度的量子系統。透過這些工具我們可以量化出一個實驗過程中獨特的非古典特性,除此之外,可以屏除掉所有古典模仿的策略並對於任務導向之過程的可靠性提供一個新的指標。利用這些的工具,我們量化了IBM量子電腦的邏輯運算並發現其具有一定的可靠性,而在量子通訊上,這些工具可以反映出量子遙傳上糾纏態的不完美性,且對於三個廣為人知的噪音通道,顯現出這些通道對於噪音強度有著不同的靈敏性,除了上述量子資訊處理的應用外,糾纏態製備中的後選擇過程被我們的工具認定為量子過程,而投影量測過程則被認定為不具有量子特性,另外,在量子狀態的分析上,我們的工具量化出最佳的時態操控性(temporal steerability)。我們的理論對於量子過程提供了一個全新的見解以及量化量子過程研究之參考。

    A physical process describes the scenario in which the initial states of objects evolve into specific final states based on the particular rules of the process. Quantum technology, including such fields as quantum computation and quantum measurements, involves many different problems about processes. However, practical processes deviate from the target process, or even lose their nonclassical features, due to environmental interference and/or unexpected experimental conditions. Consequently, the problem of evaluating the quality of practical processes has attracted great interest. This thesis therefore proposes a novel concept of classical processes to develop profoundly wide approaches using numerical methods, and then possibly extend those approaches to high-level system processes. The proposed approaches not only quantify the unique nonclassical features in a given experimental process, but also provide novel benchmarks for the reliability of a task-oriented process via ruling out any classical strategies of mimicry. The quantum computer in IBM Q is quantified and identified as sufficiently quantum by the proposed approaches. For quantum communication, the proposed approaches reveal the imperfection of non-maximal entanglement used as a carrier in quantum teleportation. Moreover, the approaches manifest the different sensitivities of the three well-known noise channels to the noise intensity. Finally, the processes of post-selection used in entanglement generation are shown to be quantum, whereas projective measurements are identified as classical. Regarding the feasibility of the proposed framework for the analysis of states, it is shown that the proposed approaches successfully optimize the temporal steerability. Overall, the framework proposed in this study provides a new insight into quantum-mechanical processes and is thus a useful paradigm for future works aimed at quantifying quantum-mechanical processes.

    摘要 i Abstract ii Acknowledgements iii Table of Contents iv List of Tables vii List of Figures viii Nomenclature x Chapter 1. Introduction 1 1.1. Background 1 1.2. Motivation 4 1.3. Purpose 5 1.4. Outline 7 Chapter 2. Essential Knowledge and Tools 9 2.1. Postulates of quantum mechanics 10 2.1.1. Postulate 1 – Statespace 10 2.1.2. Postulate 2 – Quantum evolution 11 2.1.3. Postulate 3 – Quantum measurement 13 2.1.4. Postulate 4 – Composite system 15 2.2.  The density operator 18 2.3.  Quantum tomography 21 2.3.1. Quantum state tomography 21 2.3.2. Quantum process tomography 22 2.4.  Assumption of classical local realism 26
 Chapter 3. Experimental Generation of Polarized-Entangled Photons 28 3.1.  Birefringence 28 3.2.  Spontaneous parametric down conversion and its simulation 30 3.3.  Proposed experimental technique for generating entangled photon pairs 41 3.3.1. Compensators 43 Chapter 4. Theory of Quantifying Quantum-Mechanical Processes 48 4.1.  Basic concept 49 4.1.1. Classical processes and their derivation 49 4.1.2. Quantum processes 56 4.2.  Approaches for quantitatively characterizing quantum-mechanical processes 57 4.2.1.  Quantum composition 58 4.2.2.  Process robustness 60 4.2.3.  Fidelity criteria 62 4.2.4.  Characteristics of proposed approaches and connections between them 64 4.3.  Particular examples 66 4.3.1. Quantification of unitary transformations 66 4.3.2. Quantification of projective measurements 68 4.4 Computing limitations of programs for proposed approaches 68 4.4.1. Original algorithm 69 4.4.2. Improvement algorithm 73 4.4.3. Possible directions for further programming improvements 75 Chapter 5. Quantifications of Quantum-Mechanical Processes 77 5.1. Quantum computation 77 5.2. Quantum communication 83 5.2.1. Qubit transmission 84 5.2.2. Quantum teleportation 86 5.3. Entanglement generation 88 5.4. Quantifying optimally temporal steering 91 Chapter 6. Summary and Outlook 94 6.1. Summary 94 6.2. Outlook 98 References 103 Appendix A. Experimental data of controlled-NOT gate in IBM Q 110 Appendix B. The paper submitted for publication 114

    [1] H. Kragh, Quantum Generations: A History of Physics in the Twentieth Century. Princeton University Press, 2002.

    [2] A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?,” Physical Review, vol. 47, pp. 777–780, May 1935.

    [3] A. Pais, “Einstein and the quantum theory,” Reviews of Modern Physics, vol. 51, pp. 863–914, 1979.

    [4] N. D. Mermin, “Is the moon there when nobody looks? Reality and the quantum theory,”
    Physics today, vol. 38, no. 4, pp. 38–47, 1985.

    [5] N. R. Hanson, “Copenhagen interpretation of quantum theory,” American Journal of Physics, vol. 27, no. 1, pp. 1–15, 1959.

    [6] A. Peres, Quantum Theory: Concepts and Methods. Fundamental Theories of Physics, Springer Netherlands, 1993.

    [7] J. P. Dowling and G. J. Milburn, “Quantum technology: the second quantum revolution,” Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 361, no. 1809, pp. 1655–1674, 2003.

    [8] K. Southwell, V. Vedral, R. Blatt, D. Wineland, I. Bloch, H. J. Kimble, J. Clarke, F. K. Wilhelm, R. Hanson, and D. D. Awschalom, “Quantum coherence,” Nature, vol. 453, no. 7198, pp. 1003–1049, 2008.

    [9] J. L. O’brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nature Photonics, vol. 3, no. 12, pp. 687–695, 2009.

    [10] I. Georgescu and F. Nori, “Quantum technologies: an old new story,” Physics World, vol. 25, no. 05, p. 16, 2012.

    [11] R. P. Feynman, “Simulating physics with computers,” International journal of theoretical physics, vol. 21, no. 6, pp. 467–488, 1982.

    [12] D. Deutsch and A. Ekert, “Quantum computation,” Physics World, vol. 11, no. 3, p. 47, 1998.

    [13] T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature, vol. 464, no. 7285, pp. 45–53, 2010.

    [14] C. H. Bennett and P. W. Shor, “Quantum information theory,” IEEE transactions on information theory, vol. 44, no. 6, pp. 2724–2742, 1998.

    [15] V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum metrology,” Physical Review Letters, vol. 96, no. 1, p. 010401, 2006.
    [16] E. M. Gauger, E. Rieper, J. J. L. Morton, S. C. Benjamin, and V. Vedral, “Sustained quantum coherence and entanglement in the avian compass,” Physical Review Letters, vol. 106, no. 4, p. 040503, 2011.

    [17] N. Lambert, Y.-N. Chen, Y.-C. Cheng, C.-M. Li, G.-Y. Chen, and F. Nori, “Quantum biology,” Nature Physics, vol. 9, no. 1, pp. 10–18, 2013.

    [18] E. Schrödinger, “Die gegenwärtige Situation in der Quantenmechanik,” Naturwis senschaften, vol. 23, no. 48, pp. 807–812, 1935.

    [19] R. W. Gurney and E. U. Condon, “Quantum mechanics and radioactive disintegration,” Physical Review, vol. 33, no. 2, p. 127, 1929.

    [20] M. Razavy, Quantum Theory of Tunneling. World Scientific, 2013.

    [21] E. Schrödinger, “Discussion of probability relations between separated systems,” Mathematical Proceedings of the Cambridge Philosophical Society, vol. 31, pp. 555–563, 1935.

    [22] H. M. Wiseman, S. J. Jones, and A. C. Doherty, “Steering, entanglement, nonlocality, and the Einstein-Podolsky-Rosen paradox,” Physical Review Letters, vol. 98, no. 14, p. 140402, 2007.

    [23] E. Schrödinger, “Die gegenwärtige Situation in der Quantenmechanik,” Naturwissenschaften, vol. 23, no. 48, p. 844, 1935.

    [24] J. S. Bell, “On the Einstein-Podolsky-Rosen paradox,” 1964.

    [25] H. Ollivier and W. H. Zurek, “Quantum discord: a measure of the quantumness of correlations,” Physical Review Letters, vol. 88, no. 1, p. 017901, 2001.

    [26] L. Henderson and V. Vedral, “Classical, quantum and total correlations,” Journal of Physics A: Mathematical and General, vol. 34, no. 35, p. 6899, 2001.

    [27] A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Physical Review Letters, vol. 67, no. 6, p. 661, 1991.

    [28] P. W. Shor, “Algorithms for quantum computation: Discrete logarithms and factoring,” in Foundations of Computer Science, 1994 Proceedings., 35th Annual Symposium on, pp. 124–134, IEEE, 1994.

    [29] P. W. Shor, “Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer,” SIAM review, vol. 41, no. 2, pp. 303–332, 1999.

    [30] R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, “Quantum entanglement,” Reviews of Modern Physics, vol. 81, no. 2, p. 865, 2009.

    [31] C.-M. Li, N. Lambert, Y.-N. Chen, G.-Y. Chen, and F. Nori, “Witnessing quantum coherence: from solid-state to biological systems,” Scientific reports, vol. 2, p. 885, 2012.

    [32] P. Skrzypczyk, M. Navascués, and D. Cavalcanti, “Quantifying Einstein-Podolsky- Rosen steering,” Physical Review Letters, vol. 112, p. 180404, May 2014.

    [33] S.-L. Chen, N. Lambert, C.-M. Li, A. Miranowicz, Y.-N. Chen, and F. Nori, “Quantifying non-Markovianity with temporal steering,” Physical Review Letters, vol. 116, no. 2, p. 020503, 2016.

    [34] C. Napoli, T. R. Bromley, M. Cianciaruso, M. Piani, N. Johnston, and G. Adesso, “Robustness of coherence: an operational and observable measure of quantum coherence,” Physical Review Letters, vol. 116, p. 150502, Apr 2016.

    [35] N. Gisin and R. Thew, “Quantum communication,” Nature Photonics, vol. 1, no. 3, pp. 165–171, 2007.

    [36] M. W. Johnson, M. H. S. Amin, S. Gildert, T. Lanting, F. Hamze, N. Dickson, R. Harris, A. J. Berkley, J. Johansson, and P. B. et al., “Quantum annealing with manufactured spins,” Nature, vol. 473, no. 7346, pp. 194–198, 2011.

    [37] A. Broadbent, J. Fitzsimons, and E. Kashefi, “Universal blind quantum computation,” in Foundations of Computer Science, 2009. FOCS’09. 50th Annual IEEE Symposium on, pp. 517–526, IEEE, 2009.

    [38] R. Raussendorf and H. J. Briegel, “A one-way quantum computer,” Physical Review Letters, vol. 86, no. 22, p. 5188, 2001.

    [39] R. Raussendorf, D. E. Browne, and H. J. Briegel, “Measurement-based quantum computation on cluster states,” Physical Review A, vol. 68, no. 2, p. 022312, 2003.

    [40] G. Vallone, E. Pomarico, P. Mataloni, F. D. Martini, and V. Berardi, “Realization and characterization of a two-photon four-qubit linear cluster state,” Physical Review Letters, vol. 98, no. 18, p. 180502, 2007.

    [41] K. Chen, C.-M. Li, Q. Zhang, Y.-A. Chen, A. Goebel, S. Chen, A. Mair, and J.-W. Pan, “Experimental realization of one-way quantum computing with two-photon four-qubit cluster states,” Physical Review Letters, vol. 99, no. 12, p. 120503, 2007.

    [42] H. J. Briegel, D. E. Browne, W. Dür, R. Raussendorf, and M. V. den Nest, “Measurement-based quantum computation,” Nature Physics, vol. 5, no. 1, pp. 19–26, 2009.

    [43] International Business Machines Corporation, “IBM Q, The quantum computer.” https://www.research.ibm.com/ibm-q/.

    [44] D-Wave Systems, Inc., “D-Wave The quantum computing system.” https://www.dwavesys.com.

    [45] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Physical Review Letters, vol. 70, no. 13, p. 1895, 1993.

    [46] D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature, vol. 390, no. 6660, pp. 575–579, 1997.

    [47] S.-K. Liao, H.-L. Yong, C. Liu, G.-L. Shentu, D.-D. Li, J. Lin, H. Dai, S.-Q. Zhao,
    B. Li, and J.-Y. G. et al., “Ground test of satellite constellation based quantum communication,” arXiv:1611.09982, 2016.

    [48] Y. Cao, Q. Zhang, C.-Z. Peng, and J.-W. Pan, “Quantum information experiments with free-space channels,” pp. 433–449, Springer, 2017.

    [49] K. Kraus, States, Effects and Operations. Springer, 1983.

    [50] M.-D. Choi, “Completely positive linear maps on complex matrices,” Linear Algebra and its Applications, vol. 10, no. 3, pp. 285 – 290, 1975.

    [51] C.-Y. Lu, X.-Q. Zhou, O. Gühne, W.-B. Gao, J. Zhang, Z.-S. Yuan, A. Goebel, T. Yang, and J.-W. Pan, “Experimental entanglement of six photons in graph states,” Nature Physics, vol. 3, no. 2, pp. 91–95, 2007.

    [52] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information: 10th Anniversary Edition. New York, NY, USA: Cambridge University Press, 2002.

    [53] R. Shankar, Principles of Quantum Mechanics. New York, NY: Plenum, 1980.

    [54] D. M. Greenberger, M. A. Horne, and A. Zeilinger, “Bell’s theorem, quantum theory and conceptions of the universe, chapter going beyond Bell’s theorem,” Kluwer, Dordrecht, vol. 43, pp. 69–72, 1989.

    [55] W. Dür, G. Vidal, and J. I. Cirac, “Three qubits can be entangled in two inequivalent ways,” Physical Review A, vol. 62, no. 6, 2000.

    [56] J. Yuen-Zhou, J. J. Krich, M. Mohseni, and A. Aspuru-Guzik, “Quantum state and process tomography of energy transfer systems via ultrafast spectroscopy,” Proceedings of the National Academy of Sciences, vol. 108, no. 43, pp. 17615–17620, 2011.

    [57] W. Heisenberg, “Über den anschaulichen inhalt der quantentheoretischen kinematik und mechanik,” Zeitschrift für Physik, vol. 43, no. 3, pp. 172–198, 1927.

    [58] P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Physical Review Letters, vol. 75, pp. 4337–4341, 1995.

    [59] C. Kurtsiefer, M. Oberparleiter, and H. Weinfurter, “Generation of correlated photon pairs in type-ii parametric down conversion—revisited,” Journal of Modern Optics, vol. 48, no. 13, pp. 1997–2007, 2001.

    [60] Y. Shih, “Entangled biphoton source - property and preparation,” Reports on Progress in Physics, vol. 66, no. 6, p. 1009, 2003.

    [61] M. Fox, Quantum Optics: An Introduction. Oxford Master Series in Physics, Oxford University Press, 2006.

    [62] Y. H. Shih and A. V.Sergienko, “Two-photon anti-correlation in a Hanbury Brown-Twiss type experiment,” Physics Letters A, vol. 186, no. 1-2, pp. 29–34, 1994.

    [63] H.-P. Breuer and F. Petruccione, The Theory of Open Quantum Systems. Oxford University Press, 2002.

    [64] G. Kimura, “The bloch vector for N -level systems,” Physics Letters A, vol. 314, no. 5, pp. 339–349, 2003.

    [65] J. Löfberg, “YALMIP: a toolbox for modeling and optimization in MATLAB®,” in Computer Aided Control Systems Design, 2004 IEEE International Symposium on, pp. 284–289, IEEE, 2004.

    [66] K.-C. Toh, M. J. Todd, and R. H. Tütüncü, “SDPT3–A Matlab software package for semidefinite-quadratic-linear programming in Matlab®, version 4.0,” Handbook on Semidefinite, Conic and Polynomial Optimization, pp. 715–754, 2012.

    [67] A. Gilchrist, N. K. Langford, and M. A. Nielsen, “Distance measures to compare real and ideal quantum processes,” Physical Review A, vol. 71, p. 062310, Jun 2005.

    [68] H. F. Hofmann, “Complementary classical fidelities as an efficient criterion for the evaluation of experimentally realized quantum operations,” Physical Review Letters, vol. 94, no. 16, p. 160504, 2005.

    [69] S.-L. Chen (private communication).

    [70] M. J. Todd, “Semidefinite optimization,” Acta Numerica 2001, vol. 10, pp. 515–560, 2001.

    [71] M. Yamashita, K. Fujisawa, and M. Kojima, “SDPARA: Semidefinite programming algorithm parallel version,” Parallel Computing, vol. 29, no. 8, pp. 1053–1067, 2003.

    [72] SDPA (Semidefinite Programming Algorithms) Official Page, “SDPARA: Semidefinite programming algorithm parallel version.” http://sdpa.sourceforge.net

    [73] K. Fujisawa, H. Sato, S. Matsuoka, T. Endo, M. Yamashita, and M. Nakata, “High- performance general solver for extremely large-scale semidefinite programming problems,” in High Performance Computing, Networking, Storage and Analysis (SC), 2012 International Conference for, pp. 1–11, IEEE, 2012.

    [74] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, and j. C. Phillips, “GPU computing,” Proceedings of the IEEE, vol. 96, no. 5, pp. 879–899, 2008.

    [75] A. R. Brodtkorb, C. Dyken, T. R. Hagen, J. M. Hjelmervik, and O. O. Storaasli, “State- of-the-art in heterogeneous computing,” Scientific Programming, vol. 18, no. 1, pp. 1– 33, 2010.

    [76] A. R. Brodtkorb, T. R. Hagen, and M. L. Sætra, “Graphics processing unit (GPU) programming strategies and trends in GPU computing,” Journal of Parallel and Distributed Computing, vol. 73, no. 1, pp. 4–13, 2013.

    [77] J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G. Desjardins, J. Turian,
    D. Warde-Farley, and Y. Bengio, “Theano: a CPU and GPU math compiler in Python,” in Proc. 9th Python in Science Conf, pp. 1–7, 2010.

    [78] NVIDIA Corporation, “NVIDIA GPU parallel computing.” http://www.nvidia.com/object/cuda_home_new.html.

    [79] N. Gershenfeld and I. L. Chuang, “Quantum computing with molecules,” Scientific American, vol. 278, no. 6, pp. 66–71, 1998.

    [80] J. L. O’Brien, G. J. Pryde, A. Gilchrist, D. F. V. James, N. K. Langford, T. C. Ralph, and A. G. White, “Quantum process tomography of a controlled-NOT gate,” Physical Review Letters, vol. 93, no. 8, p. 080502, 2004.

    [81] D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Physical Review A, vol. 64, no. 5, p. 052312, 2001.

    [82] “Nminimize routine in Mathematica® 11.0.”

    [83] R. Raussendorf and H. J. Briegel, “A one-way quantum computer,” Physical Review Letters, vol. 86, no. 22, p. 5188, 2001.

    [84] P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer, and A. Zeilinger, “Experimental one-way quantum computing,” Nature, vol. 434, no. 7030, pp. 169–176, 2005.

    [85] C. H. Bennett and G. Brassard, “Quantum cryptography: public key distribution and coin tossing,” International Conference on Computer, System & Signal Prosessing in Bangalore, India, 1984.

    [86]S. Massar and S. Popescu, “Optimal extraction of information from finite quantum ensembles,” Physical Review Letters, vol. 74, no. 8, p. 1259, 1995.

    [87] J. Lee and M.-S. Kim, “Entanglement teleportation via werner states,” Physical Review Letters, vol. 84, no. 18, p. 4236, 2000.

    [88] J.-W. Pan, Z.-B. Chen, C.-Y. Lu, H. Weinfurter, A. Zeilinger, and M. Żukowski, “Multiphoton entanglement and interferometry,” Reviews of Modern Physics, vol. 84, no. 2, p. 777, 2012.

    [89] Y.-N. Chen, C.-M. Li, N. Lambert, S.-L. Chen, Y. Ota, G.-Y. Chen, and F. Nori, “Temporal steering inequality,” Physical Review A Rev. A, vol. 89, p. 032112, Mar 2014.

    [90] G. S. Engel, T. R. Calhoun, E. L. Read, T.-K. Ahn, T. Mančal, Y.-C. Cheng, R. E. Blankenship, and G. R. Fleming, “Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems,” Nature, vol. 446, no. 7137, pp. 782–786, 2007.

    [91] I. de Vega and D. Alonso, “Dynamics of non-Markovian open quantum systems,” Reviews of Modern Physics, vol. 89, no. 1, p. 015001, 2017.

    [92] T. Baumgratz, M. Cramer, and M. B. Plenio, “Quantifying coherence,” Physical Review Letters, vol. 113, no. 14, p. 140401, 2014.

    [93] I. Marvian and R. W. Spekkens, “The theory of manipulations of pure state asymmetry: basic tools, equivalence classes and single copy transformations,” New Journal of Physics, vol. 15, no. 3, p. 033001, 2013.

    [94] F. Levi and F. Mintert, “A quantitative theory of coherent delocalization,” New Journal of Physics, vol. 16, no. 3, p. 033007, 2014.

    [95] A. Streltsov, U. Singh, H. S. Dhar, M. N. Bera, and G. Adesso, “Measuring quantum coherence with entanglement,” Physical Review Letters, vol. 115, no. 2, p. 020403, 2015.

    [96] A. Winter and D. Yang, “Operational resource theory of coherence,” Physical Review Letters, vol. 116, no. 12, p. 120404, 2016.

    [97] J. Carrasquilla and R. G. Melko, “Machine learning phases of matter,” Nature Physics, vol. 13, pp. 431–434, 05 2017.

    下載圖示 校內:2022-07-24公開
    校外:2022-07-24公開
    QR CODE