簡易檢索 / 詳目顯示

研究生: 李佳慶
Lee, Chia-Ching
論文名稱: 模具快速加熱系統的電磁感應加熱單元之發展
Development of Electromagnetic Induction Heating System for Rapid Mold Heating
指導教授: 黃聖杰
Hwang, Sheng-Jye
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 99
中文關鍵詞: 電磁感應加熱熱澆道模面溫度均勻性
外文關鍵詞: Electromagnetic induction heating, Hot runner, Tool surface temperature, Uniformity
相關次數: 點閱:176下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,由於射出成型具有成產迅速以及低成本的優點,使其成為製造業中重要的量產技術。而在射出成型製程時會遇到流痕、縫合線等問題,故提高模具溫度為經常被採用的解決方法,因此模具快速加熱技術在工業界的應用愈來愈廣,目前模具的加熱方式有油加熱、紅外線加熱等方法,其中電磁感應加熱技術具有可精準控溫、加熱迅速、減少生產週期、能源損耗少以及低污染等優點,故本論文將對此方法進行探討。
    本研究中將已開發的嵌入式感應加熱測試模具實際接上水路進行測試,透過柵欄式感應線圈的設計,再經由測試實驗已知可使模面加熱速率達到3℃/sec左右,而在針對局部加熱過程中的溫度均勻性可達到91%以上。
    本研究中亦探討電磁感應加熱原理應用在熱澆道系統上,透過線圈的設計,針對圓柱型熱澆道進行測試實驗,以了解此設計是否可以改善溫度均勻性的問題,而實驗結果可得知在經由線圈設計上的改變,加熱速率可達到3.4℃/sec,在均勻性方面可提升至溫差10℃以內。
    將本論文所得之結果作紀錄,未來可做更複雜的線圈設計,並實際應用在射出成型上。

    Injection molding has become one of the major fabrication technologies in recent years, and many manufacturers used it to fabricate products. However, in the injection molding process will encounter some problem such as flow mark and welding line. Therefore, rising tool surface temperature is one of the solutions for the problem and the mold rapid heating technology has been adopted more widely by industries. So far, there are many methods of mold heating, such as hot oil heating and infrared heating. Due to the advantages of electromagnetic induction heating which is precise temperature control, high speed heating, reduce the production cycle, low energy consumption and environmental pollution reduction. Therefore, this study will discuss the method.
    In this thesis, the insert type induction heating module connected to the cooling channel will be tested by experiments. According to the result of experiments, the mold surface heating rate reached about 3℃/sec and the uniformity of temperature for heated zone was higher than 91%.
    In this study, principle of electromagnetic induction heating of hot runner systems was applied. According to the result of experiments, the heating rate reached about 3.4℃/sec and the uniformity of temperature can be raised to near 10℃ of the coil design changes.

    摘要........................................................................................................ I Abstract ................................................................................................ II 致謝...................................................................................................... III 目錄...................................................................................................... VI 表目錄....................................................................................................... X 圖目錄..................................................................................................... XII 符號表.................................................................................................... XVI 第一章 緒論........................................................................................ 1 1-1 前言............................................................................... 1 1-2 射出成型基本介紹........................................................ 2 1-2-1 射出成型製程...................................................................... 2 1-2-2 射出成型的流程......................................................... 2 1-2-3 射出機設備....................................................................................... 4 1-2-4 模溫對塑膠射出成型的影響............................................ 5 1-2-5 熱澆道系統的應用.......................................................... 6 1-3 文獻回顧與模具加熱方式......................................................... 8 1-4 研究目的................................................................................ 23 1-5 文章架構................................................................................ 23 第二章 感應加熱的基本理論及運用.................................................... 24 2-1 感應加熱的介紹..................................................................... 24 2-2 金屬的電磁感應特性.............................................................. 27 2-2-1 磁滯損(hysteresis loss)與渦流損(eddy current loss) .... 27 2-2-2 電阻率(electrical resistivity).......................................... 27 2-2-3 相對導磁係數(relative permeability) ............................. 28 2-2-4 集膚效應(skin effect) .................................................... 29 2-2-5 鄰近效應(proximity effect) ............................................ 30 2-3 感應加熱的熱傳模式.............................................................. 34 2-3-1 熱傳導(conduction) ...................................................... 34 2-3-2 熱對流(convection)....................................................... 34 2-3-3 熱輻射(radiation).......................................................... 35 2-4 感應加熱的優點..................................................................... 37 第三章 嵌入式感應加熱裝置之射出成型實驗..................................... 38 3-1 前言........................................................................................ 38 3-2 磁場控制技術(magnetic flux control technique)的介紹.......... 40 3-3 實驗裝置說明......................................................................... 41 3-3-1 電磁感應加熱設備........................................................ 41 3-3-2 紅外線熱影像儀與合成樹脂塗料................................... 41 3-3-3 ARBURG 射出機........................................................... 42 3-4 嵌入式感應加熱單元.............................................................. 49 3-4-1 嵌入式感應加熱測試模具的設計................................... 49 3-5 嵌入式感應加熱裝置測試實驗................................................ 54 3-5-1 溫度均勻性分析說明..................................................... 54 3-5-2 實驗步驟...................................................................... 55 3-5-3 實驗過程與結果............................................................ 56 3-6 比較實驗結果......................................................................... 68 3-7 射出成品................................................................................ 68 第四章 熱澆道系統之感應線圈測試實驗............................................. 72 4-1 前言....................................................................................... 72 4-2 電磁爐感應加熱原理介紹....................................................... 73 4-3 實驗裝置說明......................................................................... 74 4-3-1 電磁感應加熱設備........................................................ 74 4-3-2 感應線圈...................................................................... 75 4-3-3 磁場集中器 (magnetic flux concentrator)..................... 75 4-3-4 紅外線熱影像儀和溫度量測器...................................... 75 4-3-5 加熱工件之熱澆道........................................................ 76 4-4 熱澆道之加熱測試實驗.......................................................... 79 4-4-1 溫度均勻性分析............................................................ 79 4-4-2 實驗步驟...................................................................... 79 4-4-3 實驗過程與結果............................................................ 80 第五章 結論與未來展望...................................................................... 91 5-1 嵌入式感應加熱單元.............................................................. 91 5-2 熱澆道之感應線圈的設計....................................................... 91 5-3 未來展望................................................................................ 92 參考文獻............................................................................................. 93 索引.................................................................................................... 97 作者自介............................................................................................. 99

    [1] Clifford l. Weir, “What Is Injection Molding?,” Introduction to Injection Molding and Extrusion, Society of Plastics Engineers Inc., 1975.
    [2] Dominick V. Rosato and Donald V. Rosato, “Molding Problems and Solutions,” Injection Molding Handbook, Van Nostrand Reinhold Company Inc., New York, 1986.
    [3] 張榮語,射出成型模具設計 —模具設計—,高立,台北,民國八十
    七年。
    [4] K. M. B. Jansen and A. A. M. Flaman, “Construct of Fast-Response Heating Elements for Injection Molding Applications,” Polymer Engineering and Science, 34, No.11, pp.894-897, 1994.
    [5] M. S. Despa, K. W. Kelly and J. R. Collier, “Injection Molding of Polymeric LIGA HARMS,” Microsystem Technologies, 6, pp.60-66, 1999.
    [6] 佐藤義久,今川秋彥,山喜政彥,“合成樹脂模製模具,模具之溫度調整裝置及方法”,中華民國專利公報,2001。
    [7] Ming-Chih Huang and Ching-Chih Tai, “The effective factors in the warpage problem of an injection-molded part with a thin shell feature,” Journal of Materials Processing Technology, 110, pp.1-9, 2001.
    [8] Dong-Hak Kim, Myung-Ho Kang and Young Ho Chun,“Development of A Notebook PC Housing by Using MmSH(Momentary Mold Surface Heating) Process,” Proceedings of ANTEC 2001, pp.3347-3350, 2001.
    [9] David Hatch, David Kazmer and Bingfeng, “Dynamic Cooling Design for Injection Molding,” ANTEC 2001 Conference Proceedings, Texas, pp.428-432, 2001.
    [10] Donggang Yao and Byung Kim, “Development of Rapid Heating and Cooling Systems for Using Injection Molding Applications,” Polymer Engineering and Science, 42, No.12, pp.2471-2481, 2002.
    [11] 李育芸,“感應加熱應用於模具快速加熱之研究”,中原大學機械工程學系,碩士論文,2002。
    [12] Donggang Yao and Byung Kim, “Developing Rapid Heating and Cooling Systems Using Pyrolytic Graphite,” Applied Thermal Engineering, 23, pp.341-352, 2003.
    [13] Pei-Chi Chang, Study of Thermoplastic Micro Injection Molding Technology, PHD thesis, Department of Mechanical Engineering, National Cheng Kung University, 2006.
    [14] Donggang Yao, Thomas E. Kimerling and Byung Kim, “High Frequency Proximity Heating for Injection Molding Applications,” Polymer Engineering and Science, 34, No.11, pp.938-945, 2006.
    [15] 林良澤,吳昌修,黃榮堂,“嵌入式高週波感應加熱模具開發”,行政院國家科學委員會專題研究計畫成果報告, NSC 95-2622-E-027-037-CC3,國立台北科技大學機電整合研究所。
    [16] NADA Innovation Co., “Wonder Injection Molding with Momentary Mold Surface Heating Process (E-MOLD Process)”,台灣區電腦輔助成型技術交流協會,2007。
    [17] Shia-Chung Chen, Wen-Ren Jong, Yaw-Jen Chang, Jen-An Chang and Jin-Chuan Cin, “Rapid Mold Temperature Variation for Assisting the Micro Injection of High Aspect Ratio Micro-feature Parts Using Induction Heating Technology,” Journal of Micromechanics and Microengineering, 16, pp.1783-1791, 2006.
    [18] Ernst Roland, Perrier Damien, Feigenblum José and Hemous Rémi,“ 3D inductive phenomena modeling,” Proceedings of the COMSOL Users Conference 2006, Paris, 2006.
    [19] Hideaki Fujita, Naoki Uchida and Kazuhiro Ozaki, “Zone Controlled Induction Heating (ZCIH) — A New Concept in Induction Heating —,” Proceedings of Power Conversion Conference, Nagoya, pp.1498-1504, 2007.
    [20] 張仁安,“氣體式快速模具表面動態溫控方法建置與分析之研究”,中原大學機械工程學系,2008。
    [21] Ming-Shyan Huang, Ning-Sheng Tai, “Experimental Rapid Surface Heating by Induction for Micro-Injection Molding of Light-Guided Plates,” Journal of Applied Polymer Science, Vol. 113, No. 2, pp. 1345-1354, 2009.
    [22] Frank W. Curtis, “Principle of Induction Heating,” High-frequency Induction Heating, McGRAW-HILL, New York, 1950.
    [23] Valery Rudnev, Don Loveless, Raymond Cook and Micah Black, Handbook of Induction Heating, Marcel Dekker, Inc., New York, 2003.
    [24] E.J. Davies, “Conduction and Induction Heating”, IET Power Engineering Series 11.
    [25] Jya-Ray Fan, Development of Rapid Mold Heating System by Using Electromagnetic Induction Technique, Master thesis, Department of Mechanical Engineering, National Cheng Kung University, 2008.
    [26] You-Ning Lin, Design of Insert Type Induction Heating Module for Uniform Tool Surface Heating, Master thesis, Department of Mechanical Engineering, National Cheng Kung University, 2009.
    [27] 映通,熱澆道設計便覽 - http://www.anntong.com.tw/

    無法下載圖示 校內:2020-01-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE