研究生: |
黃家瑜 Huang, Chia-Yu |
---|---|
論文名稱: |
以類神經網路為基礎之企業ESG績效改善系統 A Corporate ESG Performance Improvement System Based on Neural Networks |
指導教授: |
王泰裕
Wang, Tai-Yue |
學位類別: |
碩士 Master |
系所名稱: |
管理學院 - 工業與資訊管理學系 Department of Industrial and Information Management |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 79 |
中文關鍵詞: | 企業ESG績效表現 、ESG改善方向 、類神經網路 、隨機森林 |
外文關鍵詞: | corporate ESG performance, ESG improvement direction, neural networks, random forest |
相關次數: | 點閱:98 下載:32 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,永續議題引起了社會的廣泛關注,環境保護、社會責任以及公司治理(ESG)成為評估企業表現的有效工具之一,愈來愈多的投資人將企業每年公開的ESG訊息視為投資決策的參考依據,倘若企業能夠在ESG永續報告書中獲得較好的評級,這將增強投資人對企業未來的信任,並促進更好的融資機會。然而,目前國際上存在著多種評估ESG表現的模型,但缺乏以企業需求為出發點,提供企業改善ESG績效表現方向指引的模型。此外,儘管當前的相關法規和全球報告皆顯示企業提升ESG評級沒有特定的規律,但可通過了解卓越企業的ESG表現狀況,進而推敲企業自身的改善空間。因此,本研究選取已發行過永續報告書之企業為研究對象,並基於類神經網路方法建構一套評估績效與預測改善方向之系統。該系統包含績效模型與改善模型,前者用於「預測企業ESG之績效表現」,以幫助企業明白其於市場中的定位;而後者則是「預測企業改善方向」,通過學習等級上升資料,為企業提供可遵循之改善指引。本研究使用了Refinitiv Eikon機構所蒐集之ESG資料庫,並選擇了「工業」行業作為模型的輸入數據集。在過程中本研究應用SMOTE模組來處理改善模型資料不平衡之問題,且更進一步透過熱力圖及SHAP套件檢視每項指標的影響力,亦探討了ESG表現優異企業之支出情形,以說明指標的重要性。最終研究結果顯示,績效與改善兩模型之預測能力皆在多個評估指標中擁有突出表現,這意味著企業可以通過本研究提出的模型獲得準確的績效等第評估和可信的改善方向,而由一實際案例驗證了改善模型之有效性,表明了本研究的方法能夠為企業在實施ESG績效改善行動時提供一劑可靠的改善方針。
The importance of sustainability issues is increasing, and the Environmental, Social, and Governance (ESG) pillars have emerged as an effective tool for evaluating the performance of businesses. As investors begin to consider ESG reports as the investment references, achieving higher ESG ratings in the report can enhance investor trust and create a positive impression of enterprise's future prospects. Hence, improving ESG performance can lead to higher firm valuation and investment returns. However, the existing regulations and world-wide reports have revealed that there is no unique rules or procedures for an enterprise to enhance their ESG ratings. Moreover, previous literature has not provided clear guidelines on improving corporate ESG performance. For enterprises to achieve a higher rating, they need to know what are the status of the leading ESG enterprises and where they need to improve. In this study, we propose a corporate ESG performance improvement system, which includes two models of performance evaluation and improvement. The performance evaluation model is used to predict the rating of corporate ESG performance, and the improvement model is used to identify the directions and the issues still need to be improved. In addition, we apply random forest (RF) to build models to learn corporate historical data features in the“Industrial”category, using the SMOTE module to deal with data imbalance in the improvement model. Finally, we use the heatmap and SHAP package to examine the influence of each indicator and then illustrate the importance of indicators by discussing the expenditures of companies with outstanding ESG performance. The results show that this study's performance and improvement model have achieved outstanding capability in multiple evaluation metrics, which means that enterprises can obtain accurate performance prediction and effective improvement directions through this system.
Amel-Zadeh, A., & Serafeim, G. (2018). Why and how investors use ESG information: evidence from a global survey. Financial Analysts Journal, 74(3), 87-103.
Barnett, M. L., & Salomon, R. M. (2006). Beyond dichotomy: the curvilinear relationship between social responsibility and financial performance. Strategic Management Journal, 27(11), 1101-1122.
C Chen, J., Patten, D. M., & Roberts, R. W. (2008). Corporate charitable contributions: a corporate social performance or legitimacy strategy? Journal of Business Ethics, 82(1), 131-144.
Carnahan, S., Kryscynski, D., & Olson, D. (2017). When does corporate social responsibility reduce employee turnover? evidence from attorneys before and after 9/11. Academy of Management Journal, 60(5), 1932-1962.
Cesarone, F., Martino, M. L., & Carleo, A. (2022). Does ESG impact really enhance portfolio profitability? Sustainability, 14(4), 2050.
Cheng, B., Ioannou, I., & Serafeim, G. (2014). Corporate social responsibility and access to finance. Strategic Management Journal, 35(1), 1-23.
Costa, A. J., Curi, D., Bandeira, A. M., Ferreira, A., Tome, B., Joaquim, C., Santos, C., Gois, C., Meira, D., Azevedo, G., Inacio, H., Jesus, M., Teixeira, M. G., Monteiro, P., Duarte, R., & Marques, R. P. (2022). Literature review and theoretical framework of the evolution and interconnectedness of corporate sustainability constructs. Sustainability, 14(8), 4413.
Dalibozhko, A., & Krakovetskaya, I. (2018, November). Youth entrepreneurial projects for the sustainable development of global community: evidence from Enactus program. SHS Web of Conferences(Art. No. 01009). France: EDP Sciences.
D’Amato, V., D’Ecclesia, R., & Levantesi, S. (2021). Fundamental ratios as predictors of ESG scores: a machine learning approach. Decisions in Economics and Finance, 44(2), 1087-1110.
D’Amato, V., D’Ecclesia, R., & Levantesi, S. (2022). ESG score prediction through random forest algorithm. Computational Management Science, 19(2), 347-373.
De Lucia, C., Pazienza, P., & Bartlett, M. (2020). Does good ESG lead to better financial performances by firms? machine learning and logistic regression models of public enterprises in europe. Sustainability, 12(13), 5317.
Diez-Canamero, B., Bishara, T., Otegi-Olaso, J. R., Minguez, R., & Fernandez, J. M. (2020). Measurement of corporate social responsibility: a review of corporate sustainability indexes, rankings and ratings. Sustainability, 12(5), 2153.
Elliott, W. B., Jackson, K. E., Peecher, M. E., & White, B. J. (2014). The unintended effect of corporate social responsibility performance on investors' estimates of fundamental value. The Accounting Review, 89(1), 275-302.
Engert, S., Rauter, R., & Baumgartner, R. J. (2016). Exploring the integration of corporate sustainability into strategic management: a literature review. Journal of Cleaner Production, 112, 2833-2850.
Escrig-Olmedo, E., Fernández-Izquierdo, M. Á., Ferrero-Ferrero, I., Rivera-Lirio, J. M., & Muñoz-Torres, M. J. (2019). Rating the raters: evaluating how ESG rating agencies integrate sustainability principles. Sustainability, 11(3), 915.
Farooq, O., Rupp, D. E., & Farooq, M. (2017). The multiple pathways through which internal and external corporate social responsibility influence organizational identification and multifoci outcomes: the moderating role of cultural and social orientations. Academy of Management Journal, 60(3), 954-985.
Fatemi, A., Glaum, M., & Kaiser, S. (2018). ESG performance and firm value: the moderating role of disclosure. Global Finance Journal, 38, 45-64.
Flammer, C. (2013). Corporate social responsibility and shareholder reaction: the environmental awareness of investors. Academy of Management Journal, 56(3), 758-781.
Flammer, C., Hong, B., & Minor, D. (2019). Corporate governance and the rise of integrating corporate social responsibility criteria in executive compensation: effectiveness and implications for firm outcomes. Strategic Management Journal, 40(7), 1097-1122.
Flammer, C., & Kacperczyk, A. (2019). Corporate social responsibility as a defense against knowledge spillovers: evidence from the inevitable disclosure doctrine. Strategic Management Journal, 40(8), 1243-1267.
Flammer, C., & Luo, J. (2017). Corporate social responsibility as an employee governance tool: evidence from a quasi‐experiment. Strategic Management Journal, 38(2), 163-183.
Gao, F., Lisic, L. L., & Zhang, I. X. (2014). Commitment to social good and insider trading. Journal of Accounting and Economics, 57(2-3), 149-175.
Gimenez, C., Sierra, V., & Rodon, J. (2012). Sustainable operations: their impact on the triple bottom line. International Journal of Production Economics, 140(1), 149-159.
Godfrey, P. C. (2005). The relationship between corporate philanthropy and shareholder wealth: a risk management perspective. Academy of Management Review, 30(4), 777-798.
Hanley, J. A., & McNeil, B. J. (1982). The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology, 143(1), 29-36.
Izonin, I., Tkachenko, R., Shakhovska, N., Ilchyshyn, B., & Singh, K. K. (2022). A two-step data normalization approach for improving classification accuracy in the medical diagnosis domain. Mathematics, 10(11), 1942.
Jayachandran, S., Kalaignanam, K., & Eilert, M. (2013). Product and environmental social performance: varying effect on firm performance. Strategic Management Journal, 34(10), 1255-1264.
Kim, Y., Park, M. S., & Wier, B. (2012). Is earnings quality associated with corporate social responsibility? The Accounting Review, 87(3), 761-796.
Koh, P. S., Qian, C., & Wang, H. (2014). Firm litigation risk and the insurance value of corporate social performance. Strategic Management Journal, 35(10), 1464-1482.
Lafortune, G., Fuller, G., Moreno, J., Schmidt-Traub, G., & Kroll, C. (2018). SDG index and dashboards detailed methodological paper. Sustainable Development Solutions Network. https://scholar.google.com.tw/scholar?hl=zh-TW&as_sdt=0%2C5&q=SDG+index+and+dashboards+detailed+methodological+paper&btnG=. Accessed July 20, 2022.
Lee, K. H., Cin, B. C., & Lee, E. Y. (2016). Environmental responsibility and firm performance: the application of an environmental, social and governance model. Business Strategy and the Environment, 25(1), 40-53.
Lemaitre, G., Nogueira, F., & Cerisara, C. (2017). Imbalanced-learn (Version 0.8.1) [Software]. Retrieved February 15, 2023, from https://github.com/scikit-learn-contrib/imbalanced-learn
Li, F., & Polychronopoulos, A. (2020, January). What a difference an ESG ratings provider makes. Research Affiliates. https://www.researchaffiliates.com/publications/articles/what-a-difference-an-esg-ratings-provider-makes. Accessed July 20, 2022.
Li, S., & Lu, J. W. (2020). A dual-agency model of firm CSR in response to institutional pressure: evidence from chinese publicly listed firms. Academy of Management Journal, 63(6), 2004-2032.
Li, T. T., Wang, K., Sueyoshi, T., & Wang, D. R. D. (2021). ESG: research progress and future prospects. Sustainability, 13(21), 11663.
Loh, W. Y. (2011). Classification and regression trees. Wiley interdisciplinary reviews: data mining and knowledge discovery, 1(1), 14-23.
Lundberg, S. M., & Lee, S. I. (2017). A unified approach to interpreting model predictions. Advances in Neural Information Processing Systems, 30.
Mensah, J. (2019). Sustainable development: meaning, history, principles, pillars, and implications for human action: literature review. Cogent Social Sciences, 5(1), 1653531.
Mithani, M. A. (2017). Liability of foreignness, natural disasters, and corporate philanthropy. Journal of International Business Studies, 48(8), 941-963.
MSCI ESG Research LLC. (2022). MSCI ESG ratings methodology: executive summary. Retrieved July 9, 2022, from https://www.msci.com/our-solutions/esg-investing/esg-ratings
Naughton, J. P., Wang, C., & Yeung, I. (2019). Investor sentiment for corporate social performance. The Accounting Review, 94(4), 401-420.
Nollet, J., Filis, G., & Mitrokostas, E. (2016). Corporate social responsibility and financial performance: a non-linear and disaggregated approach. Economic Modelling, 52, 400-407.
Park, S. R., & Jang, J. Y. (2021). The impact of ESG management on investment decision: institutional investors' perceptions of country-specific ESG criteria. International Journal of Financial Studies, 9(3), 27.
Post, C., & Byron, K. (2015). Women on boards and firm financial performance: a meta-analysis. Academy of Management Journal, 58(5), 1546-1571.
Pradhan, P., Costa, L., Rybski, D., Lucht, W., & Kropp, J. P. (2017). A systematic study of sustainable development goal (SDG) interactions. Earths Future, 5(11), 1169-1179.
Quinlan, J. R. (1986). Induction of decision trees. Machine learning, 1(1), 81-106.
Refinitiv. (n.d.). Environmental, social and corporate governance - ESG. Retrieved April 6, 2023, from https://www.refinitiv.com/en/financial-data/company-data/esg-data#
Sharma, U., Gupta, A., & Gupta, S. K. (2022). The pertinence of incorporating ESG ratings to make investment decisions: a quantitative analysis using machine learning. Journal of Sustainable Finance & Investment, 1-15.
Sheehy, B., & Farneti, F. (2021). Corporate social responsibility, sustainability, sustainable development and corporate sustainability: what is the difference, and does it matter?. Sustainability, 13(11), 5965.
Sustainalytics. (2022). The ESG risk ratings definitions of material ESG issues and
corporate governance. Retrieved November 9, 2022, from https://www.sustainalytics.com/docs/default-source/meis/definitionsofmeis.pdf?sfvrsn=8e7552c0_4
Svanberg, J., Ardeshiri, T., Samsten, I., Ohman, P., Neidermeyer, P. E., Rana, T., Semenova, N., & Danielson, M. (2022). Corporate governance performance ratings with machine learning. Intelligent Systems in Accounting Finance & Management, 29(1), 50-68.
Svanberg, J., Ardeshiri, T., Samsten, I., Ohman, P., Rana, T., & Danielson, M. (2022). Prediction of environmental controversies and development of a corporate environmental performance rating methodology. Journal of Cleaner Production, 344, 130979.
Terjesen, S., Couto, E. B., & Francisco, P. M. (2016). Does the presence of independent and female directors impact firm performance? a multi-country study of board diversity. Journal of Management & Governance, 20(3), 447-483.
Timofeev, R. (2004). Classification and Regression Trees (CART) Theory and Applications. Humboldt University, Berlin.
Trumpp, C., & Guenther, T. (2017). Too little or too much? exploring u‐shaped relationships between corporate environmental performance and corporate financial performance. Business Strategy and the Environment, 26(1), 49-68.
Waas, T., Huge, J., Verbruggen, A., & Wright, T. (2011). Sustainable development: a bird's eye view. Sustainability, 3(10), 1637-1661.
Wang, H., & Qian, C. (2011). Corporate philanthropy and corporate financial performance: the roles of stakeholder response and political access. Academy of Management Journal, 54(6), 1159-1181.
Wang, S., & Gao, Y. (2016). What do we know about corporate social responsibility research? a content analysis. The Irish Journal of Management, 35(1), 1-16.
Wong, C., Brackley, A., & Petroy, E. (2019, February). Rate the raters 2019: expert views on ESG ratings. The SustainAbility Institute by ERM. https://www.sustainability.com/thinking/rate-raters-2019/. Accessed July 9, 2022.
Wong, C., & Petroy, E. (2020, March). Rate the raters 2020: investor survey and interview results. The SustainAbility Institute by ERM. https://www.sustainability.com/thinking/rate-the-raters-2020/. Accessed July 9, 2022.
Xie, J., Nozawa, W., Yagi, M., Fujii, H., & Managi, S. (2019). Do environmental, social, and governance activities improve corporate financial performance?. Business Strategy and the Environment, 28(2), 286-300.
Xue, B., Zhang, Z., & Li, P. (2020). Corporate environmental performance, environmental management and firm risk. Business Strategy and the Environment, 29(3), 1074-1096.
Yu, E. P. y., Guo, C. Q., & Luu, B. V. (2018). Environmental, social and governance transparency and firm value. Business Strategy and the Environment, 27(7), 987-1004.
Zhang, D. H., Qian, L. Y., Mao, B. J., Huang, C., Huang, B., & Si, Y. L. (2018). A data-driven design for fault detection of wind turbines using random forests and XGboost. IEEE Access, 6, 21020-21031.
Zhou, N., & Wang, H. (2020). Foreign subsidiary CSR as a buffer against parent firm reputation risk. Journal of International Business Studies, 51(8), 1256-1282.